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Let M be a nice topological space, for example a manifold. For a natural number r, let us
write Vect,(M) for the set of isomorphism classes of real vector bundles over M of rank r.
One of the most important properties of Vect,(M) is its homotopy invariance: Pulling back
along the projection map M X R — M induces an isomorphism

Vect,(M) = Vect,(M x R).

In other words: Any rank r vector bundle over M X R is isomorphic to the pullback of a rank r

vector bundle over M.
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In his famous paper [Ser55] from 1955 Serre asked, whether for a field k every finitely
generated locally free module over the polynomial ring k[X, ...X},] is free. Defining an al-
gebraic vector bundle of rank r over a scheme X to be a locally free Ox-module of constant
rank r, this conjecture may be reformulated as follows: Pulling back along the projection
map A" — Spec (k) induces an isomorphism

x = Vect,(Spec (k)) — Vect,(A").

Here we let Vect,(X) denote the set of isomorphism classes of algebraic vector bundles of
rank r over a scheme X. More than 20 years later, this conjecture was finally shown to be
true by Quillen and Suslin in [[Qui76| and [Sus76]. In fact even more was shown, namely that
Serre’s conjecture is even true when the field k is replaced by any Dedekind domain. This
leads to the following conjecture, known as the Bass-Quillen conjecture:

Conjecture 0.1 (Bass-Quillen). Let R be a regular noetherian ring of finite Krull dimension.
Then the projection Spec (R) x A! — Spec (R) induces an isomorphism

Vect,(Spec (R)) — Vect,(Spec (R) X Al).

Today, this conjecture is known to be true in many special cases, but is still open in full
generality. However, it strongly suggests that there should be some version of a homotopy
theory of smooth schemes over a fixed base S, in which the affine line A}q plays the role of the
real line.

This was finally made precise by Morel and Voevodsky: In their trailblazing paper [MV99]
from 1999 they developed a machinery, called the A'-homotopy theory of schemes. This
machinery made it possible to apply the powerful tools of homotopy theory and algebraic
topology in an algebraic setting, which soon led to spectacular applications such as the solution
of the Block-Kato conjecture by Voevodsky.

Coming back to vector bundles, a naive hope one might have is that, in line with this idea,
for a smooth scheme S the functor

Vect: Sm;g — Set,

which sends as smooth § -scheme X to the set of isomorphism classes of vector bundles over X,
is Al-invariant. Tt turns out that this fails quite spectacularly: Even in the very simple case
where S = Spec (k) is a field, the induced map Vect(P,l) - Vect(P,i x A is not a bijection.
However, there is a different invariant, derived from Vect(X), which does not see this issue.

The set of isomorphism classes of vector bundles over X namely admits the structure of a
commutative monoid, given by the direct sum operation. Considering the group completion
of this commutative monoid, which we denote by Ky(X), it turns out that this construction
is in fact Al-invariant when X is regular and noetherian. This leads us to the study of alge-
braic K-theory.

Algebraic K-theory had its origins in geometric topology and algebraic geometry. How-
ever, the real birth of algebraic K-theory took place in 1957, when Grothendieck defined
the K-group of a subcategory of an abelian category A. Taking A to be the category of
all finite locally free sheaves over a regular noetherian scheme X, we get what we denoted
by Ky(X) above. It had its first prominent appearance in Grothendieck’s reformulation of the
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Riemann-Roch Theorem in [BS58] and since then continued to appear in many deep results
and conjectures.

In the next years, the groups K;(R) and K»(R) of a ring R were defined by Bass and Milnor
and the search for higher K-groups created a lot of research activity during the 1960s. The
most important of the various constructions of higher K-groups that emerged during this period
was Quillen’s plus construction from 1969. Armed with his definition, Quillen was also able
to perform one of the first important calculations of the subject: In [[Qui72[, he computed all
higher K-groups of finite fields F,.

Soon after that, Quillen defined the higher algebraic K-theory of an exact category in his
fundamental work [Qui73|]. The Q,.-construction, which he used to do so, gave rise to a K-
theory space, whose fundamental groups are defined to be the K-groups. This work was later
modified and extended by Waldhausen in [Wal85]], where he introduced the S ,-construction,
which allowed to define higher K-groups of more general categories, today called Waldhausen
categories.

Using Waldhausen’s definition of higher algebraic K-theory, Thomason and Trobaugh in
[TTO7] were able to prove Zariski and Nisnevich descent results for the algebraic K-theory
of a scheme X. This actually motivated some aspects of the construction of Morel and Vo-
evodsky’s A!-homotopy theory of schemes: Algebraic K-theory namely should fit into their
framework and was therefore built in a way ensuring that in nice cases, i.e. when the base
scheme is noetherian and regular, algebraic K-theory is an example of what they call a motivic
space.

The goal of this thesis is to give a modern account of the above constructions and results,
using the convenient language of co-categories. These tend to be an incredibly useful tool
when trying to implement homotopical methods into other areas of mathematics. So, from a
modern point of view, it is very natural to use them when describing the motivic homotopy
theory of schemes and algebraic K-theory. The main content splits into two parts:

The first part, consisting of the first two chapters, is concerned with studying the motivic
homotopy theory of a quasi-compact and quasi-separated scheme S. In the chapter we
will study the co-topos of Nisnevich sheaves of spaces over the site of smooth §-schemes. We
will prove a few first important results, such as Nisnevich excision, which characterizes Nis-
nevich descent in terms of an excision property. We will also compare this to the construction
of Morel and Voevodsky. To do so, we will show that, if our base scheme S is particularly nice
(i.e. noetherian and of finite Krull dimension), the infinity topos we construct is hypercom-
plete, which implies that it agrees with the co-topos underlying the model category constructed
in [MV99].

In the chapter we will introduce the unstable motivic homotopy category H(S) of
a quasi-compact and quasi-separated scheme S. We will deduce some basic results and then
turn towards studying the functoriality of the construction S +— H(S). The main goal of
this chapter is to prove the so called localization or gluing theorem, which, roughly speaking,
states that a motivic space F € H(S) may be glued together from its restriction to an open
subscheme U and its complement X \ U.

In the second part of this thesis we will study the algebraic K-theory of schemes. In thethird]
chapter, we will introduce the S.-construction and use it to define the algebraic K-theory of
stable co-categories and then study the properties of this construction. The main goal will be to
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show that the algebraic K-theory functor takes certain exact sequences of stable co-categories
to fiber sequences of K-theory spaces. We will then define the non-connective K-theory spec-
trum and deduce that it is a localizing invariant.

In the chapter we will apply the methods of the chapter in order to define and
study the algebraic K-theory of schemes. The beginning will be concerned with setting the
stage. We will construct appropriate derived co-categories of quasi-coherent Ox-modules and
perfect complexes. The algebraic K-theory of a scheme X will then be defined as the K-
theory of the co-category of perfect complexes. We will then apply the results developed in
the previous chapter to deduce that algebraic K-theory satisfies Nisnevich descent.

In the chapter we will introduce the G-theory space of a noetherian scheme X and
show that it is canonically equivalent to the K-theory space of X, if X is regular. Then Quillen’s
classical result about the A'-invariance of G-theory will imply that K-theory is in fact a motivic
space, if X is regular and noetherian.

0.1. Notations and Conventions

0.2. Throughout this thesis we will constantly use the language and tools of higher category
theory. More specifically, we will use quasi-categories as a model for (co, 1)-categories. In par-
ticular, we will use the term “co-category” as a synonym for “quasi-category”. Furthermore,
we will mostly adopt the set-theoretical and terminological conventions used in [Lur(09].

0.3. We will use the following notational conventions:

— We will write S for the co-category of spaces. To be more precise, this is the localization
(in the co-categorical sense) of the 1-category of small simplicial sets, denoted by sSet,
at the subcategory of weak equivalences.

— We will write Cat,, for the co-category of small co-categories.

— We will write Prl for the co-category of presentable oco-categories and small colimit
preserving functors between them.

— For a small co-category C, we will write Psh(C) := Fun(C°, ) for the co-category of
presheaves on C.

— For a small co-category C, we will write
he: C — Psh(C)

for the co-categorical Yoneda embedding. Usually we will drop the index above and
simply write A.

1. Nisnevich Sheaves
The goal of this chapter is to construct and study the co-topos of Nisnevich sheaves on the

site of smooth schemes over a quasi-compact and quasi-separated scheme S. In section [L.1]
we will introduce the Nisnevich topology on the category Sm/s of smooth finitely presented
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S-schemes. Section will be devoted to formulating and proving Theorem which
characterizes Nisnevich sheaves in terms of an excision property. In section[[.3|we will show
that, if our base scheme S is noetherian and of finite Krull dimension, then the co-topos of
Nisnevich sheaves is hypercomplete (Theorem [I.29). This will imply that, in this case, the
oo-topos of Nisnevich sheaves that we consider agrees with the co-topos underlying the model
category used in [MV99]] to model the homotopy theory of Nisnevich (o, 1)-sheaves (see
Remark[I.31). Then in section[I.4] we will discuss points of the Nisnevich topos and use the
results from section [I.3|to deduce that the co-topos of Nisnevich sheaves has enough points
(Theorem [T.46)), if the base scheme S is noetherian and of finite Krull dimension.

1.1. The Nisnevich Topology

Definition 1.1. Let S be a quasi-compact and quasi-separated scheme. By Sm/s we denote
the category of schemes T over S such that the structure morphism 77 — § is smooth and of
finite presentation. We define a pretopology on Smys as follows:

A family of morphisms {U; — X};e; is a covering family of X if and only if

— the set [ is finite,
— for every i € I, the morphism U; — X is étale and
— for every x € X and every solid diagram

g

oy el

!

Spec (k(1) — > X

there exists a dotted arrow making the diagram commute. Here k(x) denotes the residue
field at x and i, is the canonical morphism.

We call a morphism of schemes ¥ — X satisfying the above lifting property a distinguished
Nisnevich covering morphism. 1t is easy to check that this indeed defines a pretopology
on Smys.

We define the Nisnevich topology to be the topology on Sm/s induced by the pretopology
above (see Construction [A4).

Remark 1.2. Since a morphism of finite presentation is by definition quasi-compact and
quasi-separated, it follows from [Sta20, Tag 01KV] and [Sta20, Tag 03GI] that any mor-
phism f: X — Y in Sm/s is quasi-compact and quasi-separated.

Examples 1.3.

i) Clearly every Zariski covering family is also a Nisnevich covering family.


https://stacks.math.columbia.edu/tag/01KV
https://stacks.math.columbia.edu/tag/03GI
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ii) Let k be a field with char k # 2. Then the canonical morphism
p: Spec (k[X, T, T™'1/(X* = T)) — Spec (KT, T7'1) = A} \ {0}
clearly is an étale covering. However, the canonical morphism
in: Spec (k(T)) — A, \ {0}

does not admit a lift along p. It follows that {p} is an étale covering but not a Nisnevich
covering family.

iii) We consider the morphism p from above and the inclusion of the open subscheme
Jr A0, 1) > A\ {0).

Then the family {p, j} is a Nisnevich covering family. This follows because the fiber
of p over 1 is given by Spec (k) LI Spec (k) and we therefore find a lift of the morphism
Spec (k(1)) = A} \ {0} along p.

In the case of S being a quasi-compact, quasi-separated scheme, one has the following
alternative characterization:

Proposition 1.4. Let X be a quasi-compact and quasi-separated scheme and let t: Y — X
be an étale morphism. Then n is a distinguished Nisnevich covering morphism if and only if
there is a sequence of finitely presented closed subschemes of X

0=272,c...CZ1CZy=X
such that, for all 0 < i < n — 1, the induced map on pullbacks

(Zi\Zi) Xx Y = Z; \ Ziy
admits a section.

Proof: Tt is clear that a morphism admitting such a sequence is a distinguished Nisnevich
covering morphism. For the converse implication, see [Hoy16]. O

Definition 1.5. In the situation of Proposition[I.4] we call a sequence
0=272,C...CZ1CZy=X
satisfying the above property a splitting sequence of m.

Remark 1.6. Itis a well-known fact that, for any scheme S, the category of finite type schemes
over S is essentially small. Thus, as a subcategory of an essentially small category, the cate-
gory Smys is essentially small, too.

We are now ready to introduce the main subject of study in this chapter:
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Definition 1.7. Let S be scheme. We define Shy;is(Smy/s) to be the co-category of sheaves of
spaces on Smyg with respect to the Nisnevich topology (see Construction [A.3)). In particular,
there is a left exact localization functor

LY : Psh(Smys) — Shyis(Smys)

which is left adjoint to the inclusion i: Shyis(Smys) < Psh(Smys). We will say that a mor-
phism @: ¥ — G in Psh(Smyy) is a Nisnevich-local equivalence if L?ls(oz) is an equivalence.

We will now discuss the functoriality of the above construction in the base scheme §'.

1.8. Let f: X — S be a morphism of quasi-compact and quasi-separated schemes. Then we
get an induced functor

- Xg X: Sm/s e Sm/X

given by pulling back along f. It is easy to check that this is in fact a morphism of sites. So
by Proposition|[A.17] we get a geometric morphism of co-topoi

f*1 Shnis(Smys) = Shnis(Smyx) : fs,

where f, is given by precomposing a sheaf ¥ : Sm;x — S with the functor — X X. If the
morphism f: X — Y is smooth and of finite presentation, it follows from Example [A.T9]
that f* is given by precomposing with the forgetful functor Sm;x — Sm/s and has a further
left adjoint

Sy Shyis(Smyx) — Shyis(Smys).

In particular f* preserves all small limits and colimits.

1.2. Nisnevich Excision

This section is devoted to proving Theorem which provides a nice, simple way of deter-
mining whether a presheaf # in Psh(Sm/s) is a Nisnevich sheaf.

Definition 1.9. A pullback diagram in Smyg

UxxV — V

Ll

U——x
is called an elementary distinguished Nisnevich square if
— the map j is an open immersion,
— the map p is étale and

— the induced map V Xx (X \ U) — X \ U is an isomorphism, where we equip X \ U with
the induced reduced subscheme structure.
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We will often simply call such a square a Nisnevich square.
We define the Nisnevich cd-topology on Smyg to be the topology generated by the coverage
(see Definition[A.T2)) consisting of

— families of the form {j: U — X, p: V — X} such that

UxxV — V

i

U—' 3 x

<

is a Nisnevich square and
— the empty family as a covering family of the empty scheme.

Remark 1.10. In the above definition it does not matter which subscheme structure we put
on X \ U. By this we mean that, given a Nisnevich square

UxxV —V

Loob

U—L 3 x

the induced morphism V Xy (X \ U) — X \ U is an isomorphism for any closed subscheme
structure on X \ U if and only if it is an isomorphism for the reduced structure on X \ U. To
see this, we consider the pullback square

VX (X\U) +—— Vx(X/U

| l

X\U +— (x\uy~

(with any closed subscheme structure on X \ U) and note that the right vertical arrow is an
isomorphism if the left one is. Conversely if the right vertical arrow is an isomorphism, the
left vertical arrow is a universal homeomorphism, as the horizontal arrows are. Then the claim
follows since an étale universal homeomorphism is an isomorphism (see [Bar10, Proposition
3.1]).

Example 1.11.

i) For X € Sm/g and U, V C X two open subschemes of X such that X = U UV, the square
N
U

is a Nisnevich square. We will refer to such a square as a Zariski square.

U

M= <

V—
—
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ii) Let k be a field with chark # 2. Then the open immersion j: A} \ {1} < A] and the
étale morphism

P A0} - A
e 7
give rise to a Nisnevich square.

Proposition 1.12. Let S be a quasi-compact and quasi-separated scheme. Then the Nisnevich
cd-topology and the Nisnevich topology agree.

Proof: The following argument is taken from [[VoeO8| Proposition 2.16]. It is easy to check
that, for any Nisnevich square

UxxV —V

Ll

U—1 5 x
the induced map U I V — X is a distinguished Nisnevich covering morphism, which shows
that the Nisnevich topology is finer than the Nisnevich cd-topology. Furthermore, by definition

both topologies contain the empty family as a covering of the empty set.
So let conversely {U; — X};e; be a Nisnevich covering family. Since the Zariski square

0 — X,

Il

X, — X, X,

is a Nisnevich square, it follows inductively that the family

U,»r—>]_[Uj}
]

is a covering with respect to the Nisnevich cd-topology. So it suffices to see that the induced
morphism 7: ¥ = []; U; — X is a covering morphism in the Nisnevich cd-topology. By
Proposition[T.4} there is a splitting sequence

i

0=272,C...CZ1CZy=X

of . By assumption, the pulled back map Z,_; Xx Y — Z,_, is étale and has a section s, which

therefore is an open immersion (see [Sta20, Tag 024T]]). So s(Z,-1) € Z,—1 Xx Y is open and

hence its complement 7' C Z,,_; Xx Y is closed. Furthermore, the morphism Z,_; Xx ¥ — Y is

a closed immersion, so the image of T in Y is closed. Its complement, say Y’, is openin Y.
We claim that the induced square

X\Zp)Xx Y — Y

[

X\Z. —I— X


https://stacks.math.columbia.edu/tag/024T
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is a distinguished Nisnevich square. For this we have to see that the induced morphism
P Y XxZyy = Zyy
is an isomorphism. Note that the section s: Z,_; — Y Xx Z,_; of the projection
Zy 1 Xx Y = Zy
restricts to a section s": Z,_; — Y’ Xx Z,_; of the projection
Y Xx Zp-1 = Zp-1.
Furthermore, by construction we have

Y' Xy Zpoy = (Y \T) Xx Zyy

= (Y Xx Zo-) \ (T Xx Zy-1)
(Y Xx Zy-)\T
$(Zy-1)

IR

10

It follows that s is a surjective open immersion, thus an isomorphism, so the above square

indeed is a distinguished Nisnevich square.

Moreover, the pullback of p along p’ has a section and the pullback along j has a splitting
sequence of length n — 1. So the claim follows by induction and the fact that a map with a

splitting sequence of length 1 splits and is thus covering.

]

Definition 1.13. Let ¥ € Psh(Sm/s) be a presheaf. We will say that F satisfies Nisnevich

excision if F(0) ~ * and, for any Nisnevich square

UxyV —L 5 v
ool
U—' v x

the induced square

FX) —2 s F(v)

FU) L F(Uxx V)
is a pullback square in S.

Notation 1.14. If U,: A°® — C is a simplicial object in any co-category, we will write
U

for its colimit in C (if it exists). We will call |U.,| the geometric realization of U,.
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Theorem 1.15 (Voevodsky). Let S be a quasi-compact and quasi-separated scheme and let
¥ € Psh(Smys) be a presheaf. Then F is a Nisnevich sheaf if and only if it satisfies Nisnevich
excision.

Proof: We start with the following general observation: Let

UxxV —Ls v
I l" (1)
U —j) X

be a Nisnevich square and let

u=wsxvhx

be the corresponding Nisnevich covering family. By R we denote the sieve generated by U.
For simplicity, we write

Ve = C.a(p) and U, = Cu(p)
for the Cech-nerves of p and p’ (see Construction|A.9). We now claim that the canonical map
¢: Vo Dy, H(U) — R

is an equivalence in Psh(Smys). It follows from Lemmal[A.T0]that all presheaves in discussion
are O-truncated. This colimit is computed objectwise and the morphism

|U(T) — W(T)
is an injective map of sets for every T € Sm/s. Hence the homotopy pushout
IVeI(T) Wy jry RCUXT)

in S is just the ordinary pushout in the category of sets. So we simply have to show that the
map of sets ¢(X) is bijective for every X € Smyg.

Surjectivity is obvious. For injectivity, we note that, since both canonical morphisms
[Vol(T) = R(T) and h(U)(T) — R(T) are injective, it suffices to see that any f € |V,|(T) and
g € (U)T) with ¢(T)(f) = ¢(T)(g) agree in the pushout. So let us pick suchan f: T — X
that factors though p and a g: T — U such that jo g = f. Therefore, we get an induced
morphism h: T — U Xy V suchthat p’oh = gand po j'oh = f. In particular, the morphism g
gives rise to an element in |U,|(T) that maps to g and f, respectively, under the canonical
morphisms. It follows that f and g represent the same object in the pushout which proves the
claim.

So, for any presheaf 7, the canonical morphism

lim F(W) =~
W—XeR
&
mapPsh(Sm/s)(R’ F)— MaPpsp(Sm;s) (Vel L, A(U). 5)
= lim F (Vo) Ximsw.) F(U)
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is an equivalence.
Now let us assume that ¥ is a Nisnevich sheaf on Sm/s. It is clear that 7(0) =~ *, since the
empty sieve covers 0. Also, for a square like (I), the family

u=wsxvhx

is a Nisnevich covering family. It follows that, using the notations from above, we have a
canonical equivalence

FOO = lim FW) = GmF (V) i) F ().
So let us consider the commutative diagram

F(X) — limF (V) —— F(V)
FU) — limF(U,) — F (U xx V)

where the right horizontal maps are given by the projections. We wish to show that the outer
square is cartesian. Because we know that the left square is cartesian, it suffices to show that
the right square is, too. The latter is the limit of the squares

FV)) — F(V)

| l

FU,) — FUxxV)

where the horizontal arrows are induced by the diagonals. So it suffices to see that these are
pullbacks for all n. To this end, we consider the commutative square

UxyV sV
l lA )
U, =UXx VXyx...XxV —23 Vxy...xx V=V,

We observe that A is an open immersion as p is étale. Moreover, the morphism 7y is an open
immersion as well since it sits in the pullback square

Un—> Vn

Lo

v—1sx

and j is an open immersion. Furthermore, the diagram
UxxV ——V
A
Y Ny
|

- v X

=

S— S <—
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shows that (2) is a pullback square as well. Now, for a point i,: Spec (k(x)) — V,, such that i,
does not factor through U, it follows that 7 o i, does not factor through U. So 7 o i, factors
through X \ U (with the reduced subscheme structure). But, because (I)) is a distinguished
Nisnevich square, the morphism A induces an isomorphism

U)Xy A
X\U=2X\U)xxV——— (X\U)Xx V,.

So it follows that i, factors through V. If we identify U, and V with the corresponding open
subschemes of V,,, we have just seen that V, = U, UV and U Xx V = U, N V. Let § denote
the sieve generated by the Nisnevich covering

(U5 ViV 5 v,
Using similar methods as above, one easily sees that the canonical morphism
h(U,) Upwxyvy) (V) = S

is an equivalence in Psh(Sm/g). Since ¥ is a sheaf, we get that the canonical morphism

F(V,) >  lim JFW) = F(Un) X wsgvy XF (V)

W-V, in

is an equivalence, which proves the claim.
Now let ¥ conversely be a presheaf satisfying Nisnevich excision. Using Proposition
and Proposition [A.T3] it suffices to see that, for a square like (I)) and the sieve R generated by

wx,v5Sx,
the canonical morphism

FX)—> lim F(W)
W—-XinR

is an equivalence and that 7 satisfies the sheaf condition for the empty covering of (. The latter
holds as, by assumption, we have #(0) =~ *. For the former, we consider the commutative
diagram

F(X) — limF(V,) — F(V)

l | !

FU) — limFU.) — F U xx V)

and, using the observation from the beginning of the proof, we have to show that the left square
is a pullback square. Again, the right square is the limit of the squares

F(Vw) —> F (V)

| l

FU) — F(U)



1. Nisnevich Sheaves 14

and we have seen above that the squares

UxxV —V

L

Un—y>vn

are distinguished Nisnevich (even Zariski) squares for all n. So, since ¥ satisfies Nisnevich
excision, it follows that the right square above is cartesian and so is the outer rectangle since (I))
was assumed to be a Nisnevich square. Hence the claim follows. O

Remark 1.16. From [Sta20, Tag 0303] and [Sta20, Tag 03PH] it follows that the Nisnevich
topology on Smys is subcanonical. Hence the above theorem shows that, for a Nisnevich
square as above, the induced square

WU xx V) —— h(U)

| l

V) ——— h(X)

is a pushout square in the co-category Shy;is(Smys).

1.3. Hypercompleteness

Our next goal is to prove that the infinity topos Shyis(Smys ) is hypercomplete if S is noetherian
and has finite Krull dimension. For this, we will follow [Lurll} §2].

Definition 1.17. We denote by SNi* the full subcategory of Sm/s spanned by those schemes
that are étale over S. We equip this category with the topology induced by the Nisnevich
topology. We denote the corresponding co-topos of sheaves of spaces by S njs.

Remark 1.18. Just like for Shy;s(Smys), we have that the topology on SN is generated by
the analogous version of the coverage in Definition[I.9] We also get an corresponding version
of Theorem for presheaves on SN,

Definition 1.19.

i) LetF € Psh(SN*) be a presheaf equipped with a map y: # — h(X) for X € S™*. Then,
for any morphism f: U — X in SN, we define F4(U) to be the pullback in

FrlU) — FU)

l l

* / mapgnis (U, X)

ii) Let X be € SN and let x € X be a point. Then a Nisnevich neighbourhood of x is an
étale map g: U — X together with a point u € U such that g(u) = x and such that the
induced map on residue fields k(x) — k(u) is an isomorphism.


https://stacks.math.columbia.edu/tag/03O3
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iii) We will say that y: ¥ — h(X) is weakly O-connective, if for every f: U — X in SNI
and all x € U of height 0, there is a Nisnevich neighbourhood g: U’ — U of x such
that 7,(U’) is non-empty.

For n > 0, we will say that y is weakly n-connective if:

a) Forevery f: U — X in SN and all x € U of height at most #, there is a Nisnevich
neighbourhood g: U’ — U of x such that F,(U’) is non-empty.

b) For any pair of maps #(U) — ¥ and h(V) — ¥ the induced morphism
hU) xg (V) = h(U) Xpxy h(V) = (U Xx V)

is weakly (n — 1)-connective.

By convention, we will say that any morphism is weakly (—1)-connective.

We will defer the proof of the following lemma to a later section, after we have introduced
the notion of stalks of a Nisnevich sheaf (see the end of section [I.4).

Lemma 1.20. Let y: ¥ — h(X) be an n-connective mqrphism in the co-topos Shyis(Smys).
Then y is weakly n-connective as a morphism in Psh(S ).

Lemma 1.21. Let S be a noetherian scheme, let y: ¥ — h(X) be weakly n-connective and
assume that F is a Nisnevich sheaf. Then there is a finite set of points xi,...X, € X of
height > n and a commutative diagram

;
WU) ————— h(X)

where i is induced by the inclusion of the open subscheme U = X \ |J; {xi).

Proof: We will proceed by induction on n. If n = —1, we can choose xi, ..., x;, to be the
generic points of X. These are finitely many, since X is noetherian, as S is. Then U = 0 and
we clearly get a diagram as desired. Now let n > 0. Since v is in particular weakly (n — 1)-
connective, the induction hypothesis implies that there are points xi, ..., x,, of height > n and

a commutative triangle
T
y’ \‘
i

hU) ———— h(X)

where U = X \ U, {x;}. After reordering the x;’s, we may assume that there isa 0 < k < m
such that xi, ..., xx have height n and x,, ..., x,, have height > n. We may also assume that
the x;’s are chosen in a way such that k is minimal. Our goal is to show that k = 0. Let us
assume that k # 0, so x; has height n. Since y is weakly n-connective, there is a Nisnevich
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neighbourhood f: (X', x") — (X, x;) of x; such that #£(X’) is non-empty. Thus there is a

commutative triangle
?
y \‘
f

h(X') ———— h(X)

and we may shrink X’ if necessary to assume that
ey x|
i=2
We consider the pullback square

) — X’

lf ’ f

{xi} — X
where we endow the closed subscheme m with the reduced structure. Also f’ is étale and
induces an isomorphism k(x;) — k(x") on residue fields and thus splits at the generic point
of {x;}. Since f': f~'({x1}) — {x1} is finitely presented, it follows that there is an open
subscheme Q C {x;} and a morphism s: Q — f~!({x;}) such that the diagram

Fx

/ lf'

Q0 — {x)

commutes. Since f’ is étale, the image s(Q) € f~'({37}) is open. We can thus finda V € X’
open such that

Vi = s(Q).
Now our given maps ¢: h(U) — F and y|, : (V) — F induce a morphism
hU) X (V) = (U xx V),

that is weakly (n — 1)-connective, as y is n-connective. For simplicity, we will write U’ =
U xx V. By applying the induction hypothesis, we get points yi, ..., y; € U’ of height greater
or equal than n and a commutative triangle

h(U) xg h(V)

/’

(W) > h(U")
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where W = U’ \ | ; m Furthermore, we observe that in the above we may replace X’ by

X’\U@,

because y; # x’ and all the y; have height n, so x” ¢ {y;}, since x" has height n by [Sta20| Tag
OAFF]. It follows that we may assume W = U’. Then « induces a commutative square

hU") —> h(U)

1l

W)y —— F

by the universal property of the pullback. We claim that the pullback square

U——=> UUF(V)
is a distinguished Nisnevich square. This follows, as

WUVN\U =X\U)N f(V)

= J&idnrw)
i=1

= f(V) 0 {x,

where the last equality holds, since, by construction,
fV) € fx) < x\ [t
i=2

But we have constructed V in such a way that the induced morphism
varta) = sQ) - 0= fnix}
is an isomorphism. By Remark [T.16] the square (T) thus gives rise to a morphism
O: (U U f(V) > F
which also makes the diagram

T

(] Y

h(U U f(V)) —2dwsion o )


https://stacks.math.columbia.edu/tag/0AFF
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commute. Now let us denote by ¢4, ..., 7, all generic points of m \ f(V). Observe that, since
x1 € f(V), we have t; # x; for all i. Then it follows that

o))
=1

i=2

UUF(V)=X\

because

{xi}] N&X\ (V)

(s

X\ (UUfV) =

{xi}] U (el \ £(0)

Q

—_—
—_

s ics

||
S5}

wu m]
=1

Finally we see that, since #; € {x;} and t; # x;, we have that ht(z;) > ht(x;) = n, which
contradicts the minimality of k. O

Let us quickly recall the following definitions ([Lur09, Def. 7.2.1.1 and 7.2.1.8]):
Definition 1.22.

i) An oco-topos X is said to have homotopy dimension < n, if every n-connective object
admits a global section.

ii) An oo-topos X is said to be locally of homotopy dimension < n, if there is a collection
of objects {U,}, that generate X under colimits and such that X/U, is of homotopy
dimension < n for every a.

The main result is then the following ([[Lur09, Proposition 7.2.1.10, Corollary 7.2.1.12]):

Theorem 1.23. If X is locally of finite homotopy dimension, then Postnikov towers converge
in X. In particular, the co-topos X is hypercomplete.

We will now apply this to our given situation:

Proposition 1.24. Let S be a noetherian scheme of finite Krull dimension. Then the homotopy
dimension of Sis is smaller or equal than the Krull dimension of S.

Proof: Let n be the Krull dimension of X and let ¥ € Snjs be an n-connective object. This
means that the canonical morphism y: ¥ — h(S) is n-connective and, by Lemma is
weakly n- connective. So, by Lemma [T.2T] we get that y has a section, since S does not
contain any points of height greater than n. O

Theorem 1.25. If S is noetherian and has finite Krull dimension n, then S\yis is locally of
homotopy dimension < n. In particular, Postnikov towers converge in Snis. Thus Swis is a
hypercomplete co-topos.
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Proof: Note that Sy is generated under colimits by the representable objects A(U) for U €
SNis, We claim that, for every U € SN, one has a canonical equivalence of co-topoi
Snis/h(U) = Unis.

This follows from [GV72} p.295] for the underlying 1-topoi of O-truncated objects and thus the
claim follows since both topoi in discussion are 1-localic (see [LurO9} §6.4.5]). Furthermore,
the scheme U is also noetherian of Krull dimension at most n by [Sta20| Tag OAFF], as U is
étale over S. So, by Proposition it follows that S n;s/A(U) has homotopy dimension < n,
as desired. |

We now aim at extending the above result from S nis to Shyis(Smys ).
1.26. For a scheme U, the inclusion
iy: UN® — Smy
is a morphism of sites and thus the functor
¢v: Psh(Smyg) — Psh(UN®)
given by precomposition with iy restricts to a geometric morphism
Jus: Shnis(Smyy) — Unis.
Proposition 1.27. The functor ¢V : Psh(Sm,y) — Psh(UNis) preserves Nisnevich-local equiv-
alences.

Proof: It suffices to see that, for any X € Sm,y and any Nisnevich covering sieve R — h(X),
the induced morphism ¢ (R — h(X)) is a Nisnevich-local equivalence. Since colimits in co-
topoi are universal, it is enough to show that, for any ¥ € UN' and any morphism ¢ : h(Y) —
v (h(X)), the pulled back morphism

W= v (R) Xy (nxyy M) — h(y) M

is a Nisnevich covering sieve. Since R is a Nisnevich covering sieve, there is a collection of
morphisms f;: U; — X in R such that the induced morphism

[Jui-x
i€l
is a distinguished Nisnevich covering morphism. By the Yoneda lemma, the morphism y is

given by a ¢: ¥ — X over U. Unwinding the definitions, we see that, for T € UNS, the set
W(T) is given by all morphisms g: 7 — Y in UN' such that the composition

rSydx
lies in R. It follows that W contains all f;: U; Xx Y — Y, which are given by pulling back the
f; along ¢. Finally, since
U UXxxY—>Y
i€l
is an elementary distinguished covering morphism, it follows that W is a Nisnevich covering
sieve and in particular () is a Nisnevich-local equivalence. O


https://stacks.math.columbia.edu/tag/0AFF
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Corollary 1.28. The functor jy.: Shyis(Sm;y) — Unis preserves all colimits.

Proof: Note that jy. is given by the composite

Shyis(Smy 1) ER Psh(Sm,y) -, Psh(UN®) L Unie.

Here, the morphism j denotes the inclusion of the full subcategory Shyis(Sm,y) € Psh(Sm,y)
and L denotes the left adjoint of the inclusion of Uyjs into Psh(UNS). Now let D: [ —
Shyis(Sm,yy) be a small diagram. We will write C € Psh(Sm,y) for the colimit of j o D.
Then the canonical morphism

a: C — j(colim;D(7))

in Psh(Sm/y) is clearly a Nisnevich-local equivalence. By Proposition [I.27] the induced mor-
phism ¢ () is a Nisnevich-local equivalence as well. It follows that the canonical morphism

1R

colim ; jy.(D(7))
colim ;Lc' (j(D(i)))
Lev ©)

R

Ldu (@) o )
—>  LdY(j(colim;D(7))

jus(colim ;D(i))

[l

is an equivalence, which proves the claim. O

Corollary 1.29. Let S be noetherian and of finite Krull dimension. Then Postnikov towers
converge in the oo-topos Shnis(Smys). In particular, the co-topos Shyis(Smys) is hypercom-
plete.

Proof: Recall that, forany f: U — S in Sm/s, we get an induced functor f*: Shy;is(Smys) —
Shyis(Sm, 7). Now we observe that a morphism « in Shy;s(Smys ) is an equivalence if and only
if iy, o f* is an equivalence for every f: U — § in Smy/s. Since both j. and f* preserve all
limits and colimits by Corollary and thus commute with truncations by [Lur09, Proposi-
tion 5.5.6.28], the claim follows from [Lur0O9, Proposition 5.5.6.26]. m]

Remark 1.30. The fact that Shyis(Smys) is hypercomplete is equivalent to saying that any
sheaf ¥ € Shy;is(Smys) automatically satisfies descent with respect to all hypercoverings in
Shyis(Smys) (see Theorem [A.23).

Remark 1.31. Classically, one presents the co-topos Shyis(Smys) by the Joyal-Jardine Nis-
nevich-local model structure on the category of simplicial presheaves Fun(Smg, sSet) (see
[AE17, Warning 3.491]). It follows from Corollary [1.29and [Lur09, Proposition 6.5.2.14] that
the co-topos underlying this simplical model category is equivalent to the co-topos Shyis(Smys)
constructed above, if S is noetherian and of finite Krull dimension.
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1.4. Stalks in the Nisnevich Topology
Definition 1.32.

i) We will define a category Smyg, as follows: The objects are pairs (U, u), where U is an
object of Sm/g and u is a point of the underlying topological space of U. A morphism
S (U,u) — (V,v) is amorphism f: U — V in Smys such that f(u) = v. We call an
object in Smys, a pointed smooth S-scheme.

ii) Let (U, u) be a pointed smooth S -scheme. We define the category Nbhd(U, ) to be the
full subcategory of the slice

Smys, /(U u)
on the Nisnevich neighbourhoods of (U, u).
Proposition 1.33. Using the notations from above, the category Nbh(U, u) is cofiltered.

Proof: This is clear, since the inclusion Nbhd(U, u) < Smys,/(U, u) preserves pullbacks and
therefore, the category Nbhd(U, ) has all pullbacks. O

Definition 1.34.

i) Let (U, u) € Smys, be a pointed smooth §-scheme. Note that we have a canonical func-
tor j: Nbhd(U, u)® — Sm(/’g. We define the stalk functor at (U, u) to be the composite

colim

(=)u: Psh(Smjs) —5 Fun(Nbhd(U, u)®, S) == S.
More informally, the functor (-), is given by the assignment

F - colim  F(V).
(V,v)eNbhd(U, )

ii) We call a morphism f in Psh(Smys) a stalkwise equivalence if f, is an equivalence for
all (U, u) € Sm/s*.

Lemma 1.35. Every Nisnevich-local equivalence in Psh(Smyys) is a stalkwise equivalence.

Proof: Tt suffices to see that any Nisnevich covering sieve ¢: R — h(x) is a stalkwise equiva-
lence. So let (U, u) € Smyg, and let us write & for the residue field of U at u. Since O-truncated
spaces are stable under filtered colimits in the co-category of spaces, we conclude that the
stalk h(x), is given by the colimit of sets

h(x), = colim  maj (V. X).
O (V,v)eNbhd(U,u)°P pSm/b( )

As R is also a O-truncated object of Psh(Sm/s), we get an analogous formula for the stalk R,,.
Furthermore, filtered colimits of injective maps of sets are injective, so it follows that the
induced map

Put Ry = h(x),
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is injective and it remains to show surjectivity. Note that an element a € h(x), is represented
by a commutative triangle

y— ¢ v X
ey
N

for some (V, v) € Nbhd(U, u). Since R is a Nisnevich covering sieve, there is a finite collection
of morphisms {f;: U; — X}e; in R such that the induced morphism

T UUi—>X

is a distinguished Nisnevich covering morphism. Now a(v) is a k-point of X and since 7 is
a Nisnevich-covering morphism, it follows that there is an iy € I and a map Spec (k) — U,
lifting a(v). By pulling back along @, we get a map

U,'OX)(V%V

and a point x: Spec (k) — U;, Xx V lying over v. Thus (U;, Xx V, x) is a Nisnevich neighbour-
hood of (U, u) equipped with a map to (V, v). We write @’ for the composite

pry a
U,'OXXV—>V—>X

and then the induced diagram

Uy xxV—" 3 X
\ / 2

and (T above represent the same element in A(x),. Finally, since o’ factors through Uj,, the
element represented by (@) lies in the image of ¢, and we get the claim. O

Using essentially the same argument as in the proof of Corollary[1.28] we get the following:
Corollary 1.36. The composite

SthS(Sm/S) - Psh(Sm/S) ﬂ) S

preserves all small colimits.
Remark 1.37.
i) We will abuse notation and denote the above composite by (—), as well.

ii) Since filtered colimits commute with finite limits in S, it follows from Corollary
that the stalk functor (—), preserves all colimits and finite limits. Thus the stalk functor
defines a geometric morphism

u.: 8 = Shyis(Smyg),

so in other words a point of the co-topos Shyis(Smys ).
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We will now relate stalk functors to the local rings in the Nisnevich topology:

Definition 1.38. Let (U, u) € Sm/s . We define the henselization of U at u to be the scheme

U= lim

u = V.
(V,v)eNbhd(U,u)
Observe that we have a canonical morphism p,: U" — U.

Remark 1.39. Since the category of affine Nisnevich neighbourhoods is clearly a limit-cofinal
subcategory of Nbhd(U, u), it follows that U f} is the affine scheme associated to the henseliza-
tion O}l‘]’u of the local ring Oy, (see [Sta20, Tag OBSK] ).

Proposition 1.40. Let (U,u) € Smys,. Let us denote the given map U — S by f. Then the
diagram
(=)u

Shyis(Smys) : S

ShNis(Sm/U{})

commutes, where I denotes the global sections functor.

Proof: By [Lur09, Proposition 6.2.3.20], it suffices to see that the two functors f(-), and
['o(fop,)" are equivalent when restricted to Sm/s along the Yoneda embedding. We compute
for X € Smys:

T(f © p)'(h(X)) = map,, ,(Uy. U, s X) = maps (U,.. X)
V.X)

mapy (

R

lim
(V,v)eNbhd(U,u)

=~ colim ma V., X
(V,v)eNbhd(U,u)°P Psims V%)

= h(X)u,

where the third isomorphy holds because X is finitely presented over S. Furthermore, this
isomorphism is clearly natural in X and the claim follows. O

We will now deduce that the co-topos Shyis(Smys) has enough points. We start by recalling
the classical statements for sheaves of sets:

Theorem 1.41. Let S be a noetherian scheme. A morphism a: ¥ — G between presheaves
of sets on Smys is a Nisnevich-local equivalence if and only if it is a stalkwise equivalence.

For the proof we will need the following lemma:

Lemma 1.42. Let {U; — X}ic; be a family of étale morphisms in Sm;s such that, for every
field k and any k-point x: Spec (k) — X, there is an i € I and a k-point x": Spec (k) — U;
lifting x. Assume that S is noetherian. Then there is a finite subset Iy C I such that {U; — X}ej,
is a Nisnevich covering family.
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Proof: We use Noetherian induction to assume that the claim holds for all proper closed sub-
schemes Z C X. Let n € X be a maximal point of X. Then the local ring Ox, is an artinian
local ring and thus its reduction is given by the residue field k(77). By assumption, there is an
a € I and a commutative diagram

Spec (k()) — Ua

| I

Spec (Ox,,]) — X

Let us write m for the maximal ideal of Ox,,. Then m is nilpotent as Oin is artinian local and
thus the canonical morphism

Spec (k(n)) — Spec (Ox.,)

is an infinitesimal thickening. Since p, is étale, so in particular formally étale, there is a lift
in the above diagram. As p, is of finite presentation, the above section extends to an open
neighbourhood of 7, i.e. there is an open subscheme V C X containing 7 and a commutative
diagram

-

/ Pa
—

Let us now consider the complement X \ V, which we endow with the reduced subscheme
structure. By the assumption above, there is a finite A C [ such that the induced morphism

1%

b

UUixX(X\V)—>X\V

icA
is a Nisnevich covering. Now setting Iy = A U {a}, we get the claim. O

Proof of Theorem[I.41} One of the implications is taken care of by Lemma For the
other, Lemma shows that we may assume that both # and G are Nisnevich sheaves and
we have to show that « is an isomorphism if it is a stalkwise isomorphism. So let U € Smyg .
We would like to show that the morphism

a(U): F(U) = G(U)

is an isomorphism. We will start by showing injectivity. So let x,y € ¥ (U) such that
a(U)(x) = a(U)(y). Since « is stalkwise injective, it follows that for every u € U, there
is a Nisnevich neighbourhood (7, t,) of u such that

Xr, = Yr, -

Clearly the family {T,, — U}, satisfies the condition of Lemma[I.42]and thus x and y agree
on a Nisnevich covering of U. Since ¥ is a sheaf, it follows that x = y.
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For surjectivity, let z € G(U). Since a is stalkwise surjective, using Lemma[T.42] we see that
there is a Nisnevich covering {T; — U};c; and an x; € ¥ (T;) such that

a(T)(x;) = 2, .
Using the injectivity we have shown above, we see that for every i, j € [
Xilrxy1; = xf|T,»xUT,'
Thus, by the sheaf condition, there is an x € F (U) such that
X, = X
and thus a(U)(x) = z, since G is a sheaf. ]

We will now demonstrate how to upgrade the above result to general sheaves of spaces. For
this, we need the following construction:

Construction 1.43. Let # € Psh(Sm/s) and let X € Sm/s. For x € #(X), we define the
presheaf

ﬂf(?", x): Sm;x — Set
U m,(F ), xly).

Lemma 1.44. Let n € N and let ¥ € Shynis(Smys )<, be an n-truncated sheaf. Let X € Sm/g
and x € F(X). Then the presheaf nX(F, x) is a Nisnevich sheaf on Sm/x.

Proof: Let
UxpV——YV

I

U——T
be a Nisnevich square in Sm/x. Since ¥ is a Nisnevich sheaf, the induced square

FT) — F(V)

l l

FU) — FUXr V)

of n-truncated spaces is a pullback square in S. We thus get an induced exact sequence of
homotopy groups

0 = m(F(T), xlr) = mu(F(U), xly) X 70a(F(V), xly) = 70a(F (U X1 V), Xy, v)

which precisely says that the induced square

i (F (1), xlp) ————— m(F(V), xly)

| l

0 (F(U), xly) —— m(F (U Xx V), Xyx,v)

is a pullback. Since clearly 7% (%, x)(0) = *, the claim follows by Theorem O
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Proposition 1.45. Let S be a noetherian scheme of finite Krull dimension. Let n € N and let
F € Shnis(Smys )<y be an n-truncated presheaf such that for every (U, u) € Smys, the stalk F,
is contractible. Then F is equivalent to the terminal object of Shyis(Smys).

Proof: We argue by induction on n. If n = 0, the claim follows from Theorem [T.41] So let
n>1.Let X € Sm/g and let p € X be a point. Since homotopy groups commute with filtered
colimits, the canonical morphism

7'1'3,((7:, X)p = 1 (Fp, Xp)

is an isomorphism for every x € #(X). But, by assumption, we have m,(¥,, x,) = * and, by
Lemma @L the presheaf ﬂff (7, x) is a sheaf of sets. Thus, by Theorem , it follows that
7X(F, x) = x and in particular 7,(F (X), x) = *. Therefore, the space ¥ (X) is (n — 1)-truncated
for every X € Sm/g and thus ¥ is (n — 1)-truncated. So the claim follows by the induction
hypothesis. O

Theorem 1.46. Let S be a noetherian scheme of finite Krull dimension. Let a: ¥ — G be a
morphism in Psh(Smys ). Then « is a Nisnevich-local equivalence if and only if a is a stalkwise
equivalence.

Proof: Again, one implication is just Lemma For the converse, we may assume that ¥
and G are Nisnevich sheaves by Lemma[[.35]and we would like to show that « is an equiva-
lence. We consider, for every n € N, the truncation functor

T<n: Shnis(Smyg) — Shyi(Smyg)<,.

By [Lur(9, Proposition 5.5.6.28], this functor is given by the composite

obj

Shyis(Smys) < Psh(Smys) — Psh(Smys)<, — Shyis(Smys)zn

where T(;t:f denotes the objectwise truncation functor and the last arrow is given by the restric-
tion of the localization functor L: Psh(Sm/s) — Shyis(Smys). Since objectwise truncation
preserves colimits, it again follows from Lemma @] that, for every n € N, the induced
morphism

T<n@: T§n7: - Tsng

is a stalkwise equivalence. Since, by Corollary Postnikov towers converge in the oco-
topos Shyis(Smys ), it follows that « is an equivalence if 7, is an equivalence for all n. So
we have reduced the situation to the case that ¥ and G are n-truncated for some n € N. Now,
forevery f: X — S € Sm/s and x € G(X), consider the fiber H € Shn;is(Sm/x) defined by the
cartesian square
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in Shyis(Smyx). Since n-truncated objects are stable under finite limits, it follows that H is n-
truncated. Then, since the stalk functor preserves finite limits, it follows that, for every ¥ — X
in Smx and u € Y, the space H,, is contractible, because f*« is a stalkwise equivalence. Thus,
by Proposition [I.43] it follows that H ~ *. Now, applying the global sections functor shows
that, for every x € G(X), the homotopy fiber of

a(X): F(X) - G(X)

over x is contractible. In other words, the morphism a(X) is an equivalence and the theorem
follows. =

Remark 1.47. Let S be a noetherian scheme. Let U € SN and let u € U be a point. Observe
that the category Nbhd(U, u) defined in Definition [I.32] is in fact a subcategory of the slice
SNis /7 and one thus can also define a stalk functor

(“)u: Psh(UN®) > 8.
Observe that one also gets analogous versions of the results above for these stalk functors.
We will use the opportunity to pay our debts from the last subsection:

Proof of Lemma[I.20} Letn > 0 and let y: ¥ — h(X) be an n-connective morphism in S yjs.
We will inductively show that y is weakly n-connective. We start withn = 0. Let f: U — X
be in SN and let u € U be any point. By assumption, the map 7 is an effective epimorphism
and since the stalk functor

(_)u: N Nis — S
preserves colimits and finite limits, it follows that
Yui Fu = h(X),

is an effective epimorphism. It follows that there is a Nisnevich neighbourhood (V,v) — (U, u)
and a morphism ¢: h(V) — F such that y(¢) and f: U — X represent the same element in
the stalk 4(X),. This precisely means that there is a Nisnevich neighbourhood (V’,v") with
maps g: (V',v') = (U,u) and g’: (V',v") — (V,v) such that the diagram

Wy —2 s &
7 I
W'y — hU) —L hx)

commutes. In particular, the space F, (V") is non-empty, so condition fif) a)of Definition|[T.T9|
is satisfied.

Now, for n > 0, if y is n-connective, it is in particular O-connective and thus the above
argument shows that conditionis again satisfied. Soleta: W(U) » F and b: (V) - F
be arbitrary morphisms. Since 7 is n-connective, we know that the diagonal

A: 7:—>7'-Xh(x)7'-
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is (n — 1)-connective. We now consider the diagram

hU) —£— WU) Xy F ——> h(U)

| Jwsw |

7'-;)77Xh(X)TL)7“

where ¢ = id Xa and the right square and the outer square are both pullbacks. Hence the left
square is a pullback. Since k-connective maps in any co-topos are stable under pullbacks (see
[Lur09, Proposition 6.5.1.16]), we know that ¢ is (n — 1)- connective. Now we consider

hU) x5 h(V) —2= h(U) X0 (V) —223 h(V)

lpl'l \L(id,b) lb

h(U) —— h(U) xp F —=— F

where again all squares are pullback squares. Thus 6 is (n — 1)-connective. By induction, we
get that 6 is weakly (n — 1)-connective and hence y is weakly n-connective, as desired. O

2. Unstable Motivic Homotopy Theory

In this chapter we will construct and study the unstable motivic homotopy category of a quasi-
compact and quasi-separated scheme S. In section[2.1| we will define the unstable motivic ho-
motopy category as the full subcategory of Shy;s(Sm/s) spanned by the A!-invariant sheaves.
In particular, it is a reflective subcategory of Psh(Sms) and the goal of section [2.2]is to study
the associated localization functor. In section we will study the functoriality properties
of the assignment § +— FH(S) and deduce the smooth base change (Proposition and
smooth projection formula (Proposition[2.26). The goal of section[2.4]is to better understand
the properties of the motivic direct image functor i/’ along a closed immersion i and show
that it preserves weakly contractible colimits (Proposition [2.27). This will be an important
input for the proof of Theorem [2.33] which is the main objective of section This section
is mostly inspired by [Hoy17|] and [Khal6].

2.1. The Unstable Motivic Homotopy Category

Notation 2.1. As usual, we will write A' = Spec (Z[T]) for the affine line. For a scheme S,
we will write

1 1
AS =A XSpec(Z) S

for the affine line over S. However, we will often drop the index S when there is no danger of
confusion.

Definition 2.2. Let S be a quasi-compact and quasi-separated scheme. Let W be the class of
all morphisms of the form

XxA' 5 X
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for X € Sm/g. We define the unstable motivic homotopy category H(S) to be the full subcat-
egory of Shyis(Sm/s) consisting of the W-local objects. By [Lur09, Proposition 5.5.4.15] and
since Smys is essentially small, we get a left adjoint

L: ShNiS(Sm/s) b ﬂ(S)

of the inclusion i: H(S) < Shy;s(Smyg), which exhibits H(S) as the reflective localization
obtained by inverting all morphisms of the form pr, : h(X) X h(A") — h(X). Combining this
with the localization functor of Definition we get a left adjoint

LT Psh(Smys) — H(S)

of the inclusion j: H(S) < Psh(Sm/s). We call a morphism a: ¥ — G a motivic equiva-
lence if Lg“"t(a) is an equivalence. We call an object ¥ € H(S) a motivic space.

Remark 2.3. When spelling out the above definition explicitly, we see that a presheaf ¥ €
Psh(Sm/y ) is a motivic space if and only if it is a Nisnevich sheaf and for every X € Sm/g, the
morphism

F(X) > FXx A"
induced by the projection X x A! — X is an equivalence.

Definition 2.4. We will write Psh®' (Sm ss) for the full subcategory of Psh(Sm/s) spanned by
all presheaves ¥ such that for every X € Sm/g the morphism

F(X) » F(X x A

induced by the projection X x A — X is an equivalence. Again, by [Lur09, Proposition
5.5.4.15], the inclusion k: Psh®' (Smys) <> Psh(Smyy) has a left adjoint

L%": Psh(Smys) — Psh™ (Smys),

which exhibits Psh* (Smyy ) as the reflective localization obtained by inverting all morphisms
of the form pr,: A(X) x h(A') — h(X). We call a morphism a: ¥ — G in Psh(Smys) an
Al-local equivalence if L%' () is an equivalence.

Notation 2.5. From now on, we will identify Sm/s with the full subcategory of Psh(Sm/s)
spanned by the representable objects and omit the 4(—) from the notation whenever it is con-
venient.

Definition 2.6. Let S be a quasi-compact and quasi-separated scheme. Letiy: S — A' denote
the zero section and i;: S — A! the section at one. Let

a.B:F -G

be two morphism in Psh(Sm/s). We will say that « and B are A'-homotopic, if there is a
morphism

H:AIXT—>Q
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in Psh(Smyys ) such that the diagram

F ={0}xF
(ip,id) @
AlxF —2 S ¢
(il,id)T\ [
F={l}xF

commutes. We call H an A'-homotopy from a to S.
We immediately see the following:

Lemma 2.7. Let a,3: F — G be two A'-homotopic maps in Psh(Sm/s). Then L?l (@) and
L?l (B) are equivalent in Psh®' (Smys).

2.2. Motivic Localization

The goal of this section is to give a more explicit description of the localization functor
LIS“‘“: Psh(Sm/s) — H(S), which will then allow us to deduce many of its useful proper-
ties.

Construction 2.8. Consider the functor
A A — Smyspecz)s
which associates to the partially ordered set [#] the smooth scheme
A" = Spec (Z[Ty,... T,1/To+ ...+ T, = 1))
and sends a morphism «: [n] — [k] to the morphism of schemes
A7 A" — A
whose corresponding map of rings is determined by
Ti - Zpeo1yTa-

If § is any quasi-compact quasi-separated scheme, base changing along the canonical mor-
phism S — Spec (Z) gives us a functor

A: A — Smyg .
Again, we will often drop the index S.
Definition 2.9. We define Singg to be the functor given by the composite
Psh(Smys) — Fun(A®, Psh(Smys)) — Psh(Smys),

where the first functor takes a presheaf  to the simplicial object ¥ (— X Ag).
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Lemma 2.10. Let f,g: F — G be two Al-homotopic morphisms in Psh(Smys). Then Sing (f)
and Singg (g) are equivalent in Psh(Smys ).

Proof: First of all we note that for every n € N, there is an isomorphism of rings

Z[TQ,...,TH]/(T0+...+T,1 = 1) —)Z[TQ,...,Tn_l]

T T; i<n
i
' 1-Y"'T i=n

inducing an isomorphism Ay — A¢. Furthermore this isomorphism makes the diagram

s 2y Al

0

A
A) — Ag

commute, where iy is the zero section and dp: [0] < [1] the inclusion onto 1. We get an
analogous commutative diagram for the section at one i; and §;. Thus the assumptions provide
a commutative diagram

A X F
Afi“xidl \
AlxF 25 g
A T /'
s xid
Ay X F

and since Singg commutes with products as a sifted colimit of product preserving functors, it
follows that it suffices to see that the morphisms

Sing (A2), Singg (AJ'): * = Singg(A}) — Singg (A})
agree in Psh(Sm/s ). For this we consider for n € N the simplicial object

A" AP — PSh(Sm/s)

[k]l—)]_[*

[
reA}

and observe that this construction assembles to a functor A°® — Psh(Sm/s). Now the Yoneda
lemma provides us with a natural isomorphism

mapFun(A‘JP,Psh(Sm/S)(An’ h(Aé )= X AY)) = mapgy, (A, Aé)

and thus we may consider the unique morphism of simplicial objects K: A' — h(A; )= X AS)
corresponding to the identity under the above isomorphism. By the naturality we thus get a
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commutative diagram
A0
aol \
AY — h(A)(= X AF)

a.l/

and under the identification A° = A(A)(— x A}) the map « is induced by the morphism
A¥: AY — Al and g is induced by A% : AY — Al. Thus applying the geometric realization
functor gives a commutative diagram

« = Singg (A3)

l wwi‘])

IK| .
IA'| ———— Sing,(Al)

T /Smgs @

* = Singg (AY)

and the claim follows since |A!| ~ * in Psh(Smys). m]

Proposition 2.11. Let ¥ € Psh(Smys) be a presheaf. Then Singg(F) is A'-invariant. Fur-
thermore, the functor

Sing : Psh(Smys) — Psh®' (Smys)
is left adjoint to the inclusion functor i: Psh®' (Smyg) < Psh(Smy/s)
Proof: We would like to see that the map
f: Singg(F) — Singg(F (- X Ay))
induced by the unique morphism Aé — S is an equivalence. We consider the map
y: F(=xAg) > F

induced by the zero section iy: § — A; and note that Singg(y) is a left inverse of f. By
Lemma it now suffices to see that the composite

F(-xAy) > F = F(=xAg)
is Al-homotopic to the identity. For this we consider the morphism

H: Ay X F(= X Ag) — Ag
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corresponding under adjunction to the morphism
F(—x Ag) > F(- X Ag x Ag)
induced by the multiplication map
m: Ay x AL — Al
(x,y) = xy

which provides the desired A'-homotopy.
To show that Singg is left adjoint to the inclusion, we observe that we have a canonical
natural transformation

n: idPsh(Sm/S) —io Sings
and we have to show that, for any G € PshAl(Sm/S) and ¥ € Psh(Smyy), the induced mor-
phism
. . . T]* .
MaPpgy(sm ) (i Singg (F), iG) - MaPpgysm ) (F > 1G)

is an equivalence. Since
mapPsh(Sm/s)(i Singg (F), iG) ~ [lnilreri mappsh(Sm/S)(T(_ X AS), G),

it suffices to see that the canonical morphism
F — F (= X AY)

induced by the projection Ay — § is an Al-local equivalence. We have seen above that
A% = AY and since A} = A%™! x Ag we may reduce to showing that the map

B: F = F (- xAg)

induced by Aé — § is an equivalence. But the map y from the beginning of the proof provides
a left inverse of 8 and the A'-homotopy K from above shows that oy is A'-homotopic to the
identity which completes the proof. O

Remark 2.12. Note that, since the inclusion Shy;(Sm/s) — Psh(Smys) does not preserve
geometric realizations of simplicial objects in general, the sheaf Singg () is not necessarily a
Nisnevich sheaf if F is.

We recall the following definition from [GK17, §1.2]:

Definition 2.13. Let D be a presentable co-category and let C C D be a reflective subcategory
with localization functor L: 9 — C. Then L is called locally cartesian if, for any diagram
A — B« C where A, B € C and C € D, the canonical morphism

L(A XB C) - L(A) XL(B) L(C) ~A XB L(C)

is an equivalence.
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One immediately verifies the following:

Lemma 2.14. Let D be a presentable oo-category with universal colimits and let C be a
reflective subcategory with localization functor L: D — C. If L is locally cartesian, then
colimits are universal in C.

Corollary 2.15. The functor L?] : Psh(Smyg) — Psh®' (Smys) is locally cartesian. In partic-
ular, colimits are universal in Psh®' (Smyg).

Proof: By Lemma and Proposition[2.11] it suffices to see that, for any diagram A — B «
C in Psh(Sm/,s) where A and B are Al-invariant, the canonical morphism

Singg (A Xp C) — Singg (A) Xsing(8) Singg(C) ~ A Xp Singg (C)
is an equivalence. Observe that, since A and B are Al-invariant, the canonical morphism
(Axp O) (=X AY) = A(— X AY) Xp(-xay) C(= X A3) = A Xp C(= x AY)

of simplicial objects in Psh(Sm/s) is an equivalence. Here A and B denote the constant sim-
plicial objects at A and B. Hence it follows, since colimits are universal in Psh(Sm/s ), that the
canonical morphism

Singg (A x5 C) = [(A X C)(— X A} >IA xp C(— x A})|
~A Xp |C(= X AY)|
~A Xp Sings(C)

is an equivalence. O

2.16. By abuse of notation, we will also write L : Psh(Sm/s) — Psh(Smys) for the compo-
sition of the localization functor

L3: Psh(Smys) — H(S)
with the inclusion H(S) < Psh(Smys). Similarly we will write
L?is: Psh(Sm/s) — Psh(Smys) and Sing : Psh(Sm/s) — Psh(Sm/s)

for the compositions of the localization functors with the corresponding inclusions. Then the
above adjunctions yield natural transformations

. Ni . .
idpgh(smys) = Lg" and idpsh(smys) — Singg
and thus we also get a natural transformation
idpy — LN 5 Sin
sh(Smys) s gs -

Proposition 2.17. The localization functor L'S“O‘: Psh(Sm/s) — H(S) is equivalent to the
transfinite composition

. . Nis : n
O = C(n)lgn(LS o Singg)".
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Proof: First of all, note that, for any ¥ € Psh(Sm/s), the presheaf ®(¥) is a filtered colimit of
Nisnevich sheaves. Since finite limits commute with filtered colimits, it follows that a filtered
colimit of presheaves which satisfy Nisnevich excision satisfies Nisnevich excision as well.
So @(¥) is a Nisnevich sheaf by Theorem Furthermore, observe that one also gets an
equivalence

coliNm(SingS oL§™Y"(Sings (F)) = O(F),

which can be seen through an easy cofinality argument. It follows that ¥, as a filtered colimit
of Al-invariant presheaves, is A'-invariant. It remains to show that the induced morphism
ng: F — O(F) induces an equivalence

MaPpg,sm ) (PF), G) = MaPpgysm o) (F> G)-
for G in H(S). By pulling out the colimit and by induction, it suffices to show that the induced
map F — L?‘S o Sing(¥) induces an equivalence
MaPpyy(sms) Ly~ © SING(F), G) - MaPpgysm ) (7> G)-

But this follows by definition of L’S‘IiS and Proposition Hence @ is a left adjoint of the
inclusion H(S) — Psh(Sm/s) and the claim follows by the uniqueness of adjoints. O

Corollary 2.18. The localization functor Lg*': Psh(Smys) — H(S) preserves products.

Proof: This follows from the description above: The functor Lg“s commutes with products (it
is even left exact) and Singg preserves products since it is a sifted colimit of product preserv-
ing functors. Thus LY, as a filtered colimit of product preserving functors, commutes with
products. O

Remark 2.19. Note that the functor Lgis is clearly locally cartesian as it preserves finite limits.
It follows that the localization functor Lg“’t: Psh(Sm/s) — Psh(Smyy) is locally cartesian as
well. Hence colimits are universal in (S ).

We will also make the following observation for later use:

Lemma 2.20. Every object in H(S) can be written as a sifted colimit of objects of the
form LY°(T) for some T € Smys.

Proof: Observe that any Nisnevich sheaf 7 : Sm‘/’sp — S is in particular a product preserving
functor. It follows from [Lur(09, Proposition 5.5.8.22] that # can be written as a sifted colimit
of representables in Psh(Sm/s). Now, applying the motivic localization functor L gives the
claim. m|

2.3. Functoriality

In this section we will analyse the functoriality of the assignment

S > H(S).
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Construction 2.21. Let f: X — Y be a morphism of quasi-compact and quasi-separated
schemes. This induces a functor

— Xy X: Sl’n/y - Sm/x
given by pulling back along f, which is a morphism of sites. We thus get an adjunction
f: Psh(Sm,y) = Psh(Smyx) : fi,

where the right adjoint f, is given by precomposing with the pullback functor and f* is given
by left Kan-extension. In particular, the functor f* preserves colimits and makes the diagram

Psh(Sm,y) —— Psh(Smx)

T T

(=xyX)

Sm/y _ Sm/x

commute, where the vertical arrows are given by the Yoneda embedding. We have seen in
Remark[A.T8]that f* preserves Nisnevich-local equivalences. Furthermore, the above diagram
shows that f* preserves A'-projections when restricted to Sm;y. So f* preserves motivic
equivalences and it follows by adjunction that f. preserves motivic spaces. In other words, it
restricts to a functor

fHHX) - HQ).
We also see that £ has a left adjoint
far HY) = H(X)

given by the composition

mot

H(Y) < Psh(Sm,y) L Psh(Smyy) —— H(X).
We make the following observation, which will be useful later:

Lemma 2.22. Let f: X — Y be a morphism between quasi-compact and quasi-separated
schemes. Then f.: Psh(Sm,x) — Psh(Sm,y) preserves Al-local equivalences.

Proof: It suffices to see that, for any T € Sm/x, the induced morphism
folpr)): fulT X Ay) - fu(T)

is an equivalence. Since f. and L‘l‘}l = Sing, both preserve products, it suffices to see that the
canonical morphism

m: fu(h(A) > =
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to the terminal object is an A'-local equivalence. For this, we observe that 7 has a right inverse,
induced by applying f. to the 0-section

i:X—)A)l(

in Psh(Sm;x). We now consider the morphism H: A%, X f*(Ai() - f*(Ai() which, under
adjunction, corresponds to the morphism

[(Ay X f(AY) = 1Ay X [ flAy)
= AL x frhah S5 Al xal 5 Al

where € denotes the counit of the adjunction f* 4 f. and m denotes the multiplication map.
Then H defines an A'-homotopy between idf a1y and the composite f.(i) o 7. Thus the claim
follows from Lemma 2.7 m]

We will now restrict to the case where f: X — Y is smooth and observe that we will get
some extra functoriality:

Construction 2.23. Let f: X — Y be a smooth morphism of quasi-compact and quasi-
separated schemes. In this case we get an adjunction

F: Sm/x = Sm/y —Xx Y,
where F is the forgetful functor given by composition with f. It follows that, in the adjunction
[ Psh(Sm,y) == Psh(Sm/x) : f.,

the left adjoint f™ is given by precomposition with F. Hence f* has a left adjoint f;, given by
left Kan-extension. As above, the adjoint fj preserves colimits and makes the diagram

Psh(Sm/X) i) PSh(Sm/Y)

T T

Sm/x ;) Sm/y

commute. We have seen in Example@]that fi preserves Nisnevich-local equivalences. Fur-
thermore, the functor f; preserves A'-projections when restricted to Smyy and thus it preserves
motivic equivalences. It follows that f* preserves motivic spaces and thus restricts to a functor

for HY) = H(X).
Hence it has a left adjoint fﬁ(H : H(X) — H(Y) given by the composition

mot

H(Y) < Psh(Sm,y) N Psh(Sm,x) — H(X).

In particular, we see that f, preserves all small colimits.
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Proposition 2.24 (Smooth base change). Let

XxsT —53 T
P
X —% 5

be a cartesian square of quasi-compact and quasi-separated schemes and assume that f is
smooth. Then the base change natural transformations

frgl =gl f
and

T8 = gl
are invertible.

Proof: Since the second natural transformation is the mate of the first one, it suffices to see that
the second natural transformation is an equivalence. This base change natural transformation
is given by applying LY*" to the analogous natural transformation on the presheaf-level. Since
all functors in discussion preserve colimits, in order to prove the claim on the presheaf-level, it
suffices to check this for representable presheaves i(K) for some K € Sm,r. But in this case,
the natural transformation is just

fig' (h(K)) =
WX xs T)xr K) = (K x5 X)
= g fy(h(K))
and we get the claim. O

2.25. Let f: X — S be a smooth morphism of schemes. Let A, B € H(S) and C € H(X).
Assume we are given morphisms B — A and C — f;,(A). Then we have a natural morphism

. fH e H H H
¢f1‘i (ﬁHBXf;{AC)ﬁfQ ﬁHBxféHﬁ;{Afl‘i CHBXA](’; C,
where the second arrow is induced by the counit &: fﬁ(H fq, — 1d.

Proposition 2.26 (Smooth projection formula). The morphism ¢ from above is an equiva-
lence.

Proof: Using Remark , it is easy to see that ¢ is given by applying L' to the analogous
natural morphism on the presheaf-level. So it suffices to see the claim for presheaves. We have
a canonical identification

PSh(Sm/x) = PSh((Sl’n/s )/X) = PSh(Sl’n/s )/h(X)7
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under which the morphism f; corresponds to the forgetful functor
Psh(Smys ) /nx) = Psh(Smys)
and f*: Psh(Sm/g) — Psh(Smyg),xx) corresponds to the assignment
F > F X h(X).
Thus the above natural transformation is given by the canonical morphism
(B X I(X)) Xaxnx) C = Bx4 C

induced by the projections, which is easily seen to be an equivalence. O

2.4. Closed Immersions

In this section we will study the properties of the push-forward functor ¥’ along a closed
immersion i: Z — X. We will roughly follow [Khal6| §1.7]. Our goal is the following result:

Proposition 2.27. Let i: Z < X be a closed immersion. Then i’ preserves weakly con-
tractible colimits.

We will need the following geometric input ([Gro67, Proposition 18.1.1]):

Proposition 2.28. Leti: Z — X be a closed immersion. Let f: T — Z be an étale morphism
and let x € T be a point. Then there exists an open subscheme U C T containing x and an
étale X-scheme V such that V Xx Z = U as Z-schemes.

Construction 2.29. Let C be a small co-category with an initial object 0. We will denote by
Pshy(C) the full subcategory of Psh(C) spanned by those presheaves ¥ such that (@) ~ .
One observes that the inclusion

Pshg(C) — Psh(C)

admits a left adjoint, that takes a presheaf ¥ to the presheaf ¥y, which is given as follows: If
an object U in C is initial then Fyp(U) =~ * and else Fo(U) =~ ¥ (U). We will denote this left
adjoint by Ly. Furthermore, observe that we have a localization functor

Lgl‘%ti Psh@(Sm/Z) - (]‘{(Z),

which is a left adjoint to the inclusion H(Z) — Pshg(Sm/z). Note that Lg“q’,‘ can be described
as the composition of the inclusion Pshy(Sm,z) — Psh(Sm/z) with L'S“"‘.

Lemma 2.30. Leti: Z — X be a closed immersion. Then the composite

¥: Pshy(Sm;z) — Psh(Sm/z) l—> Psh(Smx)

preserves motivic equivalences.



2. Unstable Motivic Homotopy Theory 40

Proof: By Lemmal[2.22] it suffices to see that ¥ takes Ly(R — h(Q)) to a motivic equivalence,
for any Q € Sm/; and any Nisnevich covering sieve R < h(Q). We will show this by proving
that

Y(Lo(R — h(Q)))

is a Nisnevich-local equivalence. Since representables generate Shy;s(Sm,x) under colimits
and since colimits are universal, it suffices to see that, for any h(7T") — Y (h(Q)), the pullback

S = ‘P(L@(R)) X\y(h(Q)) h(T) - h(T)

is a Nisnevich covering sieve. Since R is a Nisnevich covering sieve, there is a finite collection
{fj: Uj = Q}jes of étale morphisms in R such that the induced morphism

UUJ_)Q

jeJ

is a Nisnevich covering morphism. Note that, by the Yoneda lemma, a morphism A(T) —
Y(h(Q)) as above is given by a morphism

a:TxXxZ— Q

over Z. Unwinding the definitions, we see that, for K € Sm/y, the set S(K) consists of all
morphisms f: K — T in Sm/x such that after pulling back along i and composing with «, the
induced morphism

‘XxZ
Kxx 2% 13z % 0

isinR, or K xx Z = (. Letus write g;: U; Xo (T Xx Z) — T Xx Z for the pullback of f;
along «. By refining with open subschemes if necessary, Proposition [2.28]allows us to assume
that for every j € J there is an étale T-scheme h;: V; — T such that the pullback along i Xx T
is isomorphic to U; X¢ (T Xx Z) over T xx Z. We now consider the sieve § on T generated
by {gj: Vi > T}and T \ (T Xx Z) — T. This is a Nisnevich covering sieve, as the canonical
morphism

[LjvJuzw(Txxzqu

jeJ
is clearly a Nisnevich covering morphism. Furthermore, we get § C S by construction, so S

is a Nisnevich covering sieve as well, and we get the claim. O

Proof of Proposition[2.27y We will write j: H(Z) — Psh(Z) for the inclusion. Let D: [ —
H(Z) be a weakly contractible diagram. Let C be the colimit of this diagram in Psh(Sm/;) and
observe that, since [ is weakly contractible, we have C € Pshy(Sm,z). We have a canonical
map

n: C — j(colim D(i))
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in Psh(Sm/z), which clearly is a motivic equivalence. By Lemma [2.30] it follows that the
canonical map

colim ¥(j(D(i))) = ¥(C) — ¥(j(colim D(7)))

in Psh(Sm/x) is a motivic equivalence (here we use the notation from Lemma @) Thus, by
applying LT, we get that the canonical morphism

colim i (D(i)) = LT (colim W(j(D(i)))) — i* (colim D(i))

is an equivalence, as desired. O

2.5. The Localization Theorem

For this section, we fix a noetherian scheme of finite Krull dimension S, a closed immer-
sion i: Z — S and the complementary open immersion j: U — §. For X € Sm/g, we will
write X7 := Z Xs X and Xy = U Xg X. We start with the following trivial observation:

Lemma 2.31. The composite iy, j‘;{ HU) — H(Z) is equivalent to the constant functor on
an initial object of H(Z).

Proof: 1t suffices to see that, for any 7 € Sm,y, the motivic space iy, j;{(Lng) is equivalent
to the initial object. Since

i Jy (LGT) = LG jyU),
the claim follows as i* jyU ~ Z xg T = 0. O

2.32. Consider the following diagram
JinF ——F

| ln

U—— i F

in H(S), where £ and 7 are the counit and unit, respectively, of the respective adjunctions.
The map a corresponds, under adjunction, to the unique map j3, & — U in H(U) and b
corresponds, under adjunction, to the canonical map 0 = i}, (U) — i3, (¥). Furthermore, the
above lemma shows that the square indeed commutes, since there is (up to equivalence) only
one morphism jj; i F =il F.

The goal of this section is to prove the following theorem, for which we will follow the
argument given in [MV99].
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Theorem 2.33. The commutative square
Wi —=—=F
| I
H o
U—7F— i iy
is a pushout square in H(S).

Remark 2.34. In the proof of Theorem it will become apparent why our definition of
the unstable motivic homotopy category is the right one for our purposes. The argument will
heavily depend on the fact that we are defining motivic spaces as certain presheaves on the
category Smys of smooth schemes finitely presented over our given base S, as opposed to
for example all schemes finitely presented over S. It will also be important that the descent
conditions that we impose are at least as strong as Nisnevich descent.

Our next goal is to show that motivic equivalences can be, just like Nisnevich-local equiva-
lences, detected stalkwise.

2.35. Let U be a noetherian scheme and let u € U be a point. Write U” for the henseliza-
tion at u and p,: U" — U for the canonical morphism. For a smooth scheme T over U”, it
follows from [Sta20, Tag 01ZM] and [Sta20, Tag 0COC] that there is some Nisnevich neigh-
bourhood (Uy, ug) — (U, u) and a smooth morphism p: Ty — Uy such that the diagram

T —— T
Lol
Uy — Uy
is a pullback square. For (V,v) € Nbhd(Uj, up), we define
T = To xy, V

and then we get
TV

T = im N
(V,v)ENbhd(Up,up)
Write evy: Psh(Sm, 1) — & for the evaluation functor at 7' and consider the composite

evr

Psh(Smys) LN Psh(Sm ;n) — S.

We claim that the latter is equivalent to the composite

colim

Psh(Sm/s) — Fun(Nbhd(Uy, up)®, S) — S,

where the first functor is given by restricting along
Nbhd(Uy, 1) — Sm(/)g
(Vo) > T,

This follows since we may restrict along Yoneda embedding, where the assertion is clear.


https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/0C0C
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We obtain the following consequence:

Lemma 2.36. In the situation above, the functor p;: Psh(Sm;y) — Psh(Sm, ) preserves
Nisnevich-local and A'-invariant presheaves.

Proof: We start by showing that p}, preserves Al-invariance. As above, we observe that, for
T € Sm, we find a Nisnevich neighbourhood (Uy, up) — (U, u) and a smooth Up-scheme
T, such that

T = lim T(()V’V).
(V,v)eNbhd(Uy,up)

So the projection T x A' — T is identified with the limit of the morphisms

(Viv) 1 (Viv)
T, X A - T,

and thus, for an A!-invariant presheaf 7 € Psh®' (Smyy), the induced morphism
PuF(T) = pF (T x AD)
can by [2.35]be identified with the colimit of the induced morphisms
F(T™) = F(T5™" x A

and therefore is an A!-local equivalence. To show that p’ preserves Nisnevich-local objects,
we observe that it follows from [Sta20, Tag 01ZM] and the results in [Sta20, Tag 081C], that
any Nisnevich square

WxrQ —> 0

L]

W—r-—sT

in Sm, ;i can be written as a limit of Nisnevich squares of smooth schemes over suitable
Nisnevich neighbourhoods of u. Then the claim follows from [2.35] since filtered colimits
commute with finite limits. O

Proposition 2.37. Let «: ¥ — G be a morphism in Psh(Smys) such that, for every (U, u) €
Smys,, the morphism (f o p,)*(a) in Psh(UL’f) is a motivic equivalence, where f: U — S
denotes the given morphism. Then « is a motivic equivalence.

Proof: By assumption, we have that
LM (f © pu)"(@)) = (f © pu) (L5 ()

is an equivalence. But since f* and p;, both preserve Al-invariant and Nisnevich-local pre-
sheaves by Construction and Lemma the functor (f o p,);, is given by simply
restricting (f o p,)* to H(S). Therefore the claim follows from Proposition |1.40| and Theo-
rem [1.46] O


https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/081C
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Definition 2.38. Let X € Sm/s such that there is a section t: Z — X of the projection X :=
Z xs X — Z. We then have an induced map S — i.Xz that, under adjunction, corresponds
to t. So we can define a presheaf of sets on Sm/s via the formula

(Ds(X, t) = (X HXU U) Xi. X, S.
Unwinding the definitions, we get the following formula for Y € Smys:

Q5 (X, 0)(Y) =

mapg Y, X) Xmap, (Y7.X;) * ifY; #0
* else

Here the map * — map,(Yz, Xz) selects the composition Y, — Z 4 X7. Note that this
construction is functorial in the following sense: If f: X’ — X is a morphism in Sm/g such
that there are sections t: Z — X7 and t': Z — X, with f; o ¢’ = ¢, then there is a canonical
morphism

pr: s (X', 1) > Ds(X, 1),
which is induced by composition with f.

Remark 2.39. Note that the explicit formula above makes sense for any S -scheme Y and not
only for smooth §-schemes. So we can canonically define a presheaf

D5 (X,1): Sch)y — Set
that agrees with the one above when restricted to Smys.
Let us recall the following fact about henselian local rings:

Lemma 2.40. Let (R, m) be a henselian local ring. Suppose we are given a solid commutative
diagram

Spec (R/m) —— X’

l \( lp

Spec(R) —— X

of schemes, where p is étale. Then there is a unique dotted arrow making the diagram com-
mute.

Proof: See [Sta20, Tag 08HQ)] for the affine version one immediately reduces to as Spec (R)
is local. ]

Lemma 2.41. Let f: X’ — X be an étale morphism in Sm;s such that there are sections
t:Z— Xzandt' : Z — X, with f; ot' = t. Then the induced morphism

¢ DX, 1) = D (X, 1)

is a Nisnevich-local equivalence.


https://stacks.math.columbia.edu/tag/08HQ
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Proof: By Theorem it suffices to see that ¢y is a stalkwise equivalence. So let us pick a
henselian local ring (R, m), equipped with a morphism a: Spec(R) — S. We want to show
that the canonical morphism

Ds (X', 1)(Spec (R)) — s (X, 1)(Spec (R))

is an isomorphism. If Z = (), the claim is obvious, so we assume that Z # (). An element in the
right hand side is given by a morphism f: Spec (R) — X such that its restriction f7 is given
by t o az. By the assumption, this gives the commutative diagram

X 3 X
/ lpé l,
> Xz S

3

Spec (R); < Spec (R)

By precomposing with the canonical morphism Spec (R/m) — Spec (R); in the bottom left
corner, Lemma yields a morphism f”: Spec (R) — X’ which fits into the commutative
diagram
Spec (R/m) —— X’
| )
Spec (R) ;) X

Pulling back to Z yields the commutative diagram

Spec (R/m) —— X,
b
l / lpz
fz
Spec (R); —— Xz

and it follows that f7 = ' o @z by the uniqueness in Lemma@ Thus f’ defines an element
in @g (X, t")(Spec (R)) which is a preimage of f. Since any other preimage of f agrees with
f’ when pulled back to Z, it follows that f” is the only preimage, again by the uniqueness in
Lemma [2.40} Thus we get the claim. m|

We will also need the following variation of Lemma for smooth morphisms:

Lemma 2.42. Let X be a smooth scheme over a henselian local ring (R,m). Let I C R be an
ideal and assume we are given a commutative triangle

X
)
Spec (R/I) <2 Spec (R)

Then there exists a section s': Spec (R) — X of p such that s’ o j = s.
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Proof: Let us by x € Spec(R/I) € Spec (R) denote the closed point corresponding to the
maximal ideal. By [Sta20, Tag 054L], there are Spec (A) € X and Spec (B) C Spec (R) affine
open with s(x) € Spec (A) and p(Spec (A)) € Spec (B) and a natural number d such that we
have a factorization

X ¢ Spec(A) — ad

NS

Spec (R) <—— Spec(B)

with pr the canonical projection and f étale. Since Spec (R) is local and x € Spec (B), it follows
that Spec (B) = Spec (R). As Spec (R/I) is local as well, it follows that s factors through
Spec (A) and thus we have reduced the situation to the case where we have the diagram

Spec (A) —— Ad

Spec (R/I) —— Spec (R)

By the universal property of the polynomial algebra, we can extend the morphism f o sto a
section sp: Spec (R) — Aﬁ of pr and get a commutative diagram

Spec (R/m)

i

Spec (R/I) ——> Spec (A)

Ll

Spec (R) —2— A4
By Lemma [2.40] we get a morphism s”: Spec (R) — Spec (A) making the diagram

Spec (R/m) —— Spec (A)

l/lf

Spec (R) —2— A¢
commute and by the uniqueness in Lemma[2.40} the diagram

Spec (R/I) —— Spec (A)

L

Spec (R) — 0 A%
commutes as well. Thus s’ is the desired section. O

The main ingredient of the proof of Theorem [2.33]is the following:


https://stacks.math.columbia.edu/tag/054L

2. Unstable Motivic Homotopy Theory 47

Proposition 2.43. For X € Sm/s and a sectiont: Z — Xz of the canonical morphism X; — Z,
the presheaf ©g (X, t) is motivically contractible.

Proof: By Proposition we may assume that S = Spec (R) for a henselian local ring R.
Since S is henselian, the section Z — X extends to a section s: § — X by Lemma [2.42]
Using the same arguments as in the proof of Lemma and by applying Lemma we
may assume that X is affine and that there is a commutative diagram

x —L ad
v
Z—— 8§ —=3S
where f is étale. The section f o s is, on the level of rings, given by a morphism
a: R[X;,...,X;] >R
and we can compose with the isomorphism of R-algebras
R[Ty,...,Ty] = R[Xy,...,X4]
Ti— X — (X))

to assume that f o s is given by the zero section ip: § — Ag’. Since f is étale, we can
apply Lemma m again and only have to show that ®g (A%, t,) is motivically contractible,
where ty: Z — A is the zero section. For this, observe that, for any ¥ € Sm/s, we have
that Og (A‘Sl, to)(Y) is a subset of h(A‘SZ)(Y) and the 0-section ip: § — A‘Sl restricts to a sec-
tion s: § — g (A%, 1) of the unique morphism @y (A{, 79) — S. Furthermore, the homotopy

H: Ay x Ad — Ad
A, x) > Ax

. . . pr i .
between the identity and the composite Ag’ 585 Ag restricts to a homotopy
K: A} x Dg(AL 19) — D5(AS, 1)

between the identity and the composite g (Az, ) — S 5 (ON (Ag, to). This completes the
proof. O

Proof of Theorem[2.33} We start by noting that j, jj;H and i;,, preserve all colimits as they are

left adjoints. Furthermore, the functor i*’ preserves weakly contractible colimits by Proposi-
tion[2.27] Since sifted simplicial sets are weakly contractible ([Lur09} Proposition 5.5.8.7]),
it follows from Lemmam that we may assume that 7 is given by LJ*'X for some smooth
S -scheme X. Note that a consequence of Lemma[2.30]is that the diagram

Pshy(Sm/z) —— Pshy(Smys)

ngml ngpol

HZ) — s H1(s)
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commutes. SO we compute:
M LX) = (LS (X)) = LE°(i. X 7).

Furthermore, we have that j# j,*HLg‘O‘X ~ L§°(Xy) and so it suffices to see that the map of
presheaves

XHXU U—- l*XZ

is a motivic equivalence. By Remark [2.19] it suffices to see that, for any p: ¥ — § € Smyg
equipped with a map Y — i,Xz, the pulled back map

v XUy, U)X, x, Y =Y

is a motivic equivalence. Consider the following cartesian square:

Y, -5y
L
zZ—5s
Using the smooth projection formula and smooth base change on the presheaf-level (see the

proofs of Proposition [2.26|and Proposition[2.24), we see that i is equivalent to applying py to
the projection

(P’ X Upx, pU) Xpimpx ¥ = Y.
Indeed, by smooth base change, we get that
LiVp' X ~ilp™i' X =~ prii'X
and thus, by the smooth projection formula, we have

pe((p"X Upx, pU) Xiimpex ¥) = pp(p" (X Uy, U) Xpeiiox Y)
~ (X Ox, U) X;»x Y.

Since py preserves motivic equivalence, this shows that we may assume that ¥ = S. In this
case, the morphism § — i.X; corresponds under adjunction to a section ¢t: Z — X of the
canonical morphism Xz — Z. So it suffices to show that the canonical map

Ds(X,1) = S

is a motivic equivalence, i.e. that ®g(X,?) is motivically contractible. But this is precisely
Proposition and the claim follows. O

Remark 2.44. Note that the above theorem does not hold it we do not impose A'-invariance.
By this we mean that the analogous diagram

W'F — F

L

U——— i"i.F
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of sheaves is not cocartesian in the co-topos Shyis(Smys). We can for example pick a noethe-
rian henselian local ring (R, m) of finite Krull dimension. We consider the closed subscheme Z
given by the quotient R — R/m. Let U be the complement and let j and i be the associated
open and closed immersion, respectively. We now consider the sheaf represented by the affine
line A. Then the square

Ay — Ag

Lol

U —— i"(A))

is not cocartesian in Shyis(Spec (R)). To see this, we can take the stalk at the closed point of
Spec (R), which is equivalent to applying the global sections functor, as Spec (R) is henselian
local. Then the induced square is

0 —— R

Lo

0 —— R/m

which is clearly not a pushout square. The proof of Theorem shows how imposing A'-
invariance fixes this behaviour.

However, an easy adaption of the arguments in this section shows that the analogue of
Theorem holds if we restrict ourselves to the small Nisnevich site and work with the
oo-topos S nis instead.

3. Algebraic K-Theory of Stable co-Categories

In this chapter we will study the algebraic K-theory of small stable co-categories. In sec-
tion 3.1 we will introduce the S ,-construction and use it to define the algebraic K-theory of
small pointed co-categories with finite colimits. We will then focus on the special case of sta-
ble co-categories. One of the main features of the algebraic K-theory functor is that it sends
certain exact sequences of small stable oco-categories to fiber sequences of K-theory spaces.
To make such a statement precise, we have to introduce and study suitable notions of exact
sequences at first, which will be the goal of section [3.2] In section [3.3| we will then deduce
the above mentioned statement (see Theorem [3.43). In section [3.4] we will construct the non-
connective K-theory spectrum and use the results of section to show that it sends exact
sequences of stable co-categories to fiber sequences of spectra.

3.1. The S.-Construction
In this section we will roughly follow [Lurl4, Lecture 16].

Definition 3.1. Let C be a pointed co-category with finite colimits and let P be a poset. We
define

PP ={(i,j)e PxP|i<j}
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Then a P-gapped object of C is a functor F: P® — C satisfying:
i) For all i € P we have F(i, i) ~ %, where * is a terminal object of C.

ii) Foralli < j < kin P, the square

! !

F(j,j)) — F(j.k)
is a pushout square. In other words,
F(, j) = F@i,k) = F(j, k)
is a cofiber sequence.

We will denote the full subcategory of Fun(P®,C) spanned by the P-gapped objects by
Gapp(C). Note that a morphism of posets P — Q induces a morphism Gap,(C) — Gapp(C)
of P-gapped objects.

We will denote by S ,(C) the maximal subgroupoid of Gap;,;(C). We thus obtain simplicial
Kan-complex S.(C). We call S.(C) the Waldhausen construction of C.

Remark 3.2. Spelling out the above definition, we see that the oco-category Gap,(C) is
the co-category of diagrams of the form

Xoo —> Xog —> ... —> Xon

R

X1 — .. — X,

.
i

where every square is a pushout square and all objects on the diagonal are equivalent to the
zero object.

Definition 3.3. Let C be a pointed co-category with finite colimits. Consider the geometric
realization |S.(C)|. It has a canonical (up to contractible choice) base point #, induced by the
canonical map * ~ §o(C) — |§.(C)|. We define K(C) to be the loop space Q(|S +(C)|). We call
K(C) the K-theory space of C and define the n-th K-group of C to be

K(C) = my(K(C), 1) = 70s1 (IS o (O], ).
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Remark 3.4.

i)

ii)

Recall that, for a simplicial Kan-complex U,: A’ — sSet, the geometric realization
|U.| agrees with the homotopy type represented by the diagonal simplicial set

D(U,): A® — Set
[n] = (Un)n.
However, note that this simplicial set in general is not a Kan-complex.

In the situation above, it is not hard to see that the diagonal simplicial set D(S .(C)) as-
sociated to S +(C) does in fact have the horn lifting property with respect to all horns A?,
with n < 2. It follows that the fundamental group 7;(|S+(C)|, *) = Ko(C) can be iden-
tified with the set of equivalence classes of 1-simplices a: A! — D(S.(C)). The group
structure is given as follows: We have [a] - [8] = [y] if there is a 2-simplex

a: A2 5 D(S.(C))

such that

0—|A(U.l) a,

B

and 0—|A<0~2‘ =Y.

O'lAu.z;

Unwinding the definitions, we see that equivalence classes of 1-simplices can be iden-
tified with equivalence classes of objects in C and [X] - [Y] = [Z] if and only if there is
a cofiber sequence

X—>7Z->Y
in C. The two canonical cofiber sequences
X—->XUY->Y
and
Y-XIY-X

furthermore show that Ky(C) is abelian. Thus K(C) is isomorphic to the free abelian
group generated by the set of equivalence classes of objects in C modulo the relation
that [X] + [Y] = [Z], whenever there is a cofiber sequence

X—>7Z-Y.

Remark 3.5. Let C and D be pointed co-categories with finite colimits and let F': C — D be
a functor which preserves finite colimits. Then, for any n € N, the induced functor

Fun([n]®,C) — Fun([n]®, D)

restricts to a functor Gapy,,;(C) — Gap,(D). Thus we get an induced map [S,(C)| = |S (D)
and finally a map K(C) — K(D) which we will denote by K(F).
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Construction 3.6. Observe that the coproduct functor II: C x C — C is right exact and thus
induces a functor

+1 SO XIS (O] =[S (C X C) = |S(O)]-

Note that, if we apply m; to the above map, we recover the addition map of Ky(C). Further-
more, if we are given two right exact functors F,G: C — D, we get an induced functor

IS (B + 1S« (G)]: 1S+ (O] = IS o (D)

given be applying |S .(—)| to the composite

cLY ol p,

We will now quickly note the following useful observation (see [BGT13, Lemma 7.3]):
Lemma 3.7. Restriction along the inclusion
jiln=11< [n]?
i 0,i+1)
induces an equivalence
Gapy, (C) — Fun(A"™!, C).
In particular, the oo-category Gapy,,(C) is again stable.

Notation 3.8. We will write CatZ* for the subcategory of Cat,, that is spanned by the small
stable co-categories and exact functors between them.

Construction 3.9. Let Cat™! denote the 1-category of all small stable co-categories and exact

functors between them. Then the S .-construction gives rise to a functor of 1-categories

Cat®™! — Fun(A®, sSet) EaN sSet,

00

where the first functor sends a small stable co-category A to the simplicial Kan-complex S .(A)
and |—| denotes the functor which sends a bisimplicial set to its diagonal. If now f: A — Bis
a Joyal equivalence of small stable co-categories, the induced map

Sn(f): Su(A) = Su(B)

is a homotopy equivalence and thus the induced morphism of diagonal simplicial sets is a weak
equivalence by [GJ09, §IV Proposition 1.9]. It is not hard to see that Cat’ is equivalent to the
localization of the 1-category Cat®™! at the Joyal equivalences. By the universal property of
the localization, we thus get an induced functor

ISo(—)|: Cat » S
of co-categories. Furthermore, by composing with the loop space functor we also get a functor

K: CatZ —» S.
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3.2. Exact Sequences

Remark 3.10. Recall that an co-category C is called idempotent complete if every idempo-
tent F': Idem — C admits a colimit in C (see [Lur09, §4.4.5]).

If C is stable, then C is idempotent complete if and only if ho(C) is an idempotent com-
plete 1-category in the ordinary sense, by [Lurl12, Lemma 1.2.4.6]. Furthermore, the inclusion
Cat), — Cat,, of the full subcategory of small idempotent complete co-categories into all
small co-categories admits a left adjoint

(=)!%m: Cat,, — CatY,,

called idempotent completion. Moreover, it follows from [Lur09, Lemma 5.4.2.4] that, for any
infinite regular cardinal x we have

Cidem =In dK(C)K —comp’

where (-)*“°" denotes the full subcategory spanned by the k-compact objects. In particular,
it follows from [Lur12}, Proposition 1.1.3.6] that Clidem g again stable.

Notation 3.11. We write Cat®™" for the full subcategory of Cat®y spanned by the idempotent
complete small stable co-categories.

Definition 3.12. A sequence A 5B A C in Cat®" is called exact if
i) the morphism a is fully faithful,

ii) the composite b o a is equivalent to the zero functor and

iii) the induced map B/A — C induces an equivalence (B/A)idem >c , where B/A denotes
the cofiber of a in CatZ}.

Remark 3.13. It follows from Remark [3.10} that the adjunction above restricts to an adjunc-
tion

(=)dem: Cat™* = Cat’™™ ..

If follows that condition )] above can be rephrased by saying that the sequence A —» B — C
is a cofiber sequence in the co-category Cat™".

Our next goal is to provide a more explicit description of the cofiber B/A in CatZ:.

Definition 3.14. Let B be a stable co-category and let A C B be the inclusion of a stable
subcategory. Let Wp 4 denote the class of all morphisms f in B such that the cofiber of f is
contained in the essential image of A.

Proposition 3.15. Let i: A — B be a fully faithful exact functor between small idempotent
complete stable oco-categories. Then there is a canonical equivalence

¢: BIW;41 > B/A.
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Proof: We will start by showing that B[WE’IA] is stable. It is easy to see that Wp 4 is stable
under both pullbacks and pushouts and satisfies the 2-out-of-3 property. It follows that the
triple (B, Wp 4, B) is both an co-category with weak equivalences and fibrations and an co-cat-
egory with weak equivalences and cofibrations in the sense of [Cis19, Definition 7.4.12]. It
follows from [Cis19, Theorem 7.5.18] and its dual version that B[Wg;] has all finite limits
and colimits and the localization functor

y: B— B[W54]

preserves finite limits and colimits. It follows that B[ng] is pointed. To show that it is stable,
it suffices to see that, for every x € B[WE'A], the canonical morphisms

x — XQx and 2Qx — x

are equivalences, where X and Q denote the suspension and the loop functor, respectively. By
construction of the localization, the map vy is essentially surjective, so this follows because y
is exact and B is stable. We observe that, since the composite

A— BS B/A

is 0, it follows that 7 inverts all morphisms in Wg 4: A morphism in an stable co-category is an
equivalence if and only if its cofiber is 0. Thus we get an induced functor ¢: B[WE,L] — B/A
by the universal property of the localization. Now we observe that, for any small stable oco-
category D, we have a pullback square

Fun®(B/A, D)> —— Fun®(B, D)

| !

x* ——— Fun®(A, D)™

which shows that Fun®*(B/A, D)~ is given by the full subgroupoid of all functors F: B — D
with F o i ~ (. Again, since a morphism in D is an equivalence if and only if its cofiber is 0,
it follows that

Fun™(B/A, D)~ ~ FuneWXB‘A (B,D)™ ~ Funex(B[Wg’lB], D)~,

where the last equivalence follows from [Cis19} Proposition 7.5.28]. Furthermore, it is easy
to see that the above equivalence is induced by ¢ and the claim follows from the Yoneda
lemma. O

Definition 3.16. For a fully faithful functor i: A — B in CatZ, we call the cofiber B/A the
Verdier-quotient of i.

For later use, we will now also study exact sequences of stable presentable co-categories
and their relationship to exact sequences of small stable co-categories.

Notation 3.17. We will write PrL for the full subcategory of Prl spanned by the presentable
stable co-categories.
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Definition 3.18. A sequence C — D — & in Pr; is called exact if

i) the composite v o u is zero,
ii) the functor u is fully faithful and
iii) the sequence is a cofiber sequence in PrL.

Proposition 3.19. Let A % B Cbean exact sequence in Cat?™. Then the induced sequence
Ind Ind
nd(4) 22, 1nd(B) 22 1md(c)
is exact.

Proof: 1t follows from [Lur0O9} Proposition 5.3.5.11] that Ind(x) is fully faithful and it is clear
that Ind(v) o Ind(u) =~ 0. The fact that
Ind(u) Ind(v)
Ind(A) —— Ind(B) —— Ind(C)
is a cofiber sequence follows by combining Remark [3.13] [Lur09| Proposition 5.3.5.10] and
[Lur09, Proposition 5.3.5.13]. |

Lemma 3.20. Let i: C — D be a fully faithful functor in Prk. Let k be an infinite regular
cardinal and assume that C is k-compactly generated and that i preserves k-compact objects.
Then the canonical functor

-1 -1
DIW py-comp rcomp] = DIWp ]
is an equivalence.

Proof: Note that the collection of morphisms Wyy-comp crcomp is a (small) set. By [Lur(09} Propo-
sition 5.5.4.15] and [Lur(09, Proposition 5.5.4.20], it thus suffices that the strongly saturated
collections of morphisms generated by Wey-com ce-comp and Wy ¢ agree (see [Lur09, Definition
5.5.4.5]). Since clearly Wpx-com cicomp & Wy e, it suffices to see that Wy ¢ is contained in the
smallest strongly saturated class generated by Wp«-comp crecomp, which we will denote by S. For
this, let

xLytz
be a cofiber sequence in D such that Z € i(C). As C is k-compactly generated, we can find
a k-filtered diagram Z,: I — C*°°™P such that
colimZ; ~ Z.
i€l
Let us write Y; = Y Xz Z; and X; = fib(Y; — Z;). Let us consider the fiber 7; of the canonical
map f;: X; — Y;. Then, in the diagram

o

—

2

Né—=<«—o

—
—

o
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all squares are cartesian. Since C is stable, the cofiber of the canonical map 7; — 0 is equiv-
alent to Z; and thus contained in C***°™P. Furthermore, the morphism i preserves x-compact
objects by assumption and thus 7; ~ QZ; is contained in D*°°™P. Thus the map 7; — 0 is
contained in Wpx-comp cxcomp and it follows that f; is, as a pushout of a map in S, contained in S .
Since by construction

xLy= colim(X; L
1€
it follows that f is contained in S and the claim follows. O

Construction 3.21. In the situation of Lemma it follows that D[Wp, '] is equivalent to
the full subcategory of D spanned by the Wy, o-local objects. In particular, we get a fully faith-
ful functor D[W@,C‘l] — P that admits a left adjoint L. By [Lur09, Proposition 5.5.4.20],
this adjoint L induces an equivalence

Fun“(D[Wpc™'1,E) = Funf, (D, )

for any presentable co-category &. Here, by Fun‘L)VDC(Z), &) we denote the full subcategory

of the co-category Fun*(D, &) spanned by all functors F: D — & that invert all morphisms
in Wz),c.

Corollary 3.22. Let i: C — D be a fully faithful functor in Prk. Let k be an infinite regular
cardinal and assume that C is k-compactly generated and that i preserves k-compact objects.
Then there is a canonical equivalence

D[Wpe'1 = D/C = cofib(i).

Proof: By definition of the cofiber D/C, we get a pullback square

Fun®(D/C, &)~ — Funk(D, &)
* ——% Fun®(C, &)

of spaces for any presentable stable co-category &. But since a morphism in a stable co-cate-
gory is an equivalence if and only if its cofiber is 0, it follows that the composite

DWopco 1 D5 DJC
induces an equivalence
Fun“(D/C,&)" S Funfy, (D,&)" S Fun“(D[Wpc'1.6)°

for any presentable co-category & Now the claim follows from the Yoneda lemma if we can
show that Z)[W@,C"] is presentable and stable. Presentability is clear. To show that it is
stable it suffices to see that the suspension functor X: D — D preserves Wy ¢-local objects,
by [Lurl2, Lemma 1.1.3.3]. But this follows by adjunction, as the loop functor Q: D — D
sends morphisms in Wy ¢ to morphisms in Wy, . This completes the proof. O
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We are now able to provide a partial converse to Proposition

Proposition 3.23. Consider an exact sequence C L0568 of compactly generated pre-
sentable stable oco-categories. Let k > w be a regular cardinal and assume that u and v both
preserve k-compact objects. Then the induced sequence

QK-eomp _, qyK-comp _, ok -comp

. . erf
is an exact sequence in Catl, .

Proof: We would like to show that the induced functor
@: Dk—comp/ck -comp __, ok-comp

is an equivalence after idempotent completion. Note that it follows from [Lur09, Proposi-
tion 5.4.2.9] and [Lur09, Remark A.2.6.4] that C, D and & are k-accessible. Now let A be
any k-accessible co-category. Then we compute

Funl( -acc (IndK (DK -comp /CK —comp)’ ﬂ) ~ Fun(z)l( -comp /CK -comp , ﬂ)
= FunWDK -comp ok -comp (-DK “eomp s ﬂ)
~ Fun;* (Ind, (D °™P), A)

Wk -comp Cck-comp

=~ Fun“?(&, A),

where the first and the third equivalence follow from [[Lur0O9} Proposition 5.3.5.10], the second
equivalence from Proposition [3.15] and the last equivalence from Lemma [3.20] Furthermore,
it is easy to see that the above equivalence is induced by the functor

Ind,(p): Ind (DX COMP /CKCOMP) _ Tnd, (E€ ™) ~ &,

which therefore is an equivalence, too. By restricting this to x-compact objects again, the
claim follows from [Lur09, Lemma 5.4.2.4]. O

Corollary 3.24 (Thomason-Neeman localization theorem). Let us consider an exact sequence
CHDS5E of compactly generated presentable stable co-categories. Let k > w be a regular
cardinal and assume that u and v both preserve k-compact objects. Let e € ™. Then
there is a k-compact object d € D °™ such that e is a retract of v(d).

Proof: This follows from Proposition [3.23] because the functor DX O™P — DK -comp jCK-comp
is, as a localization, essentially surjective. O

In fact, we can be a bit more specific about the object d above. For this we will use the
following easy result about Kjy:

Proposition 3.25. Let C be a stable co-category and let Cy C C be a full stable subcategory
such that every object in C is a retract of an object in Cy. Then the induced map i: Ko(Cp) —
Ky(C) is injective and an object X is in the essential image of Cy if and only if [X] is in the
image of i.
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Proof: See [Lurl4, Lecture 14, Proposition 19]. O

It follows that, in the above situation, the object X @ £X is always contained in the essential
image of Cy. Thus we obtain the following strengthened version of Corollary [3.24}

. v
Corollary 3.26. Let us consider an exact sequence C 5056 of compactly generated
presentable stable oco-categories. Let k > w be a regular cardinal and assume that u and v
both preserve k-compact objects. Let e € E°™. Then there is a d € D*°™ such that

v(d) ~ e ® Ze.

3.3. The Waldhausen Fibration Theorem

This section is devoted to proving our version of the Waldhausen Fibration Theorem (see The-
orem [3.41)) and then deduce that K-theory takes exact sequences of small stable co-categories
to fiber sequences.

The main ingredient we will use is the following:

Theorem 3.27 (Additivity). Let C be a stable co-category. Then the canonical morphism

Fun(A',C) » CxC
(f: A—> B) > (A,cofib(f))

induces an equivalence
1S «(Fun(A', C)| = |S(C X C)| =[S (O)IXIS . (C)].

Proof: This is originally due to Waldhausen, see [Wal85, Theorem 1.4.2]. See the proof
of [Lurl4, Lecture 17, Theorem 1] for an argument using the language of this thesis. O

Let us now collect a few corollaries:

Corollary 3.28. Consider the three functors G,G’,G": Fun(A',C) — C given by

G(A — B) = A,
G'(A— B) =B
and G” (A — B) = cofib(A — B).

Then |S o«(G)| + 1S «(G”)| is homotopic to |S «(G”)|.
Proof: We observe that the functor

®: CxC - Fun(A!,0)
(A,B) » (A > ALl B)

is a right inverse to the functor in Theorem Therefore it induces an equivalence after
applying |S «(—)|. So the claim follows since G’ o ® ~ (G G”) o ®. O
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Corollary 3.29. Let C and D be stable co-categories and let
a
F - F/ N F//
be a cofiber sequence in Fun™(C, D). Then one has a homotopy equivalence
IS «(F) = IS o(F)| + IS o (F7).

Proof: The natural transformation a determines an exact functor H: C — Fun(A!, D) such
that, with the notation from above,

GoH=F
G oH=F,
andG” oH = F”.

So the claim follows from the above corollary. O

Example 3.30. Let C and D be stable co-categories and let F': C — D be an exact functor.
Then the cofiber sequence of endofunctors

F—->0—-5Xp0oF,
where Xy is the suspension functor, shows that there is a homotopy
0 =[S (F)+I1S«(ZF)I.

We now turn towards the proof of the Fibration Theorem. For this, we will need a few
technical preliminaries:

Lemma 3.31. Let C be an oo-category and let W C C be a subcategory. Assume that there is
a right calculus of fractions of W in C (in the sense of [|Cis19, Definition 7.2.6]). Then W is
saturated if and only if it satisfies the 2-out-of-6 property.

Proof: Consider the localization functor y: C — C[W~']. Recall that W is called saturated
if, for every morphism s in C, the morphism y(s) is an equivalence if and only if s € W.
Since a morphism is an equivalence if and only if it becomes an isomorphism in the homotopy
category and since localizations are compatible with taking homotopy categories, we may
reduce to the 1-categorical case by [Cis19, Corollary 7.2.12]. In the 1-categorical case this is
well known, see for example [KSO06| Proposition 7.1.20]. O

Example 3.32. Let C be an co-category with finite limits and let W be a subcategory. If W
is closed under pullbacks, then there exists a right calculus of fractions of W in C by [Cis19,
Proposition 7.2.16]. Thus, if W also satisfies 2-out-of-6, the above Proposition shows that W
is saturated.

Proposition 3.33. Let B be a stable co-category and let A C B be the inclusion of a full stable
subcategory that is closed under retracts in B. Then Wp 4 is saturated.
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Proof: By the above example, it suffices to see that Wp 4 is stable under pullbacks and satis-
fies 2-out-of-6. Stability under pullbacks is obvious. So consider three composable morphisms

xLyszhr
such that gf and hg are in W. We get a diagram

8

X s Y s Z ST
| A A
* s Y/X s Z/X s T/X
L
* s 7)Y s T)Y

where all squares are pushout and pullback squares. The bottom right square gives rise to the
pullback square

QT)Y —— 7/X

| l

« — S T/X®Z/Y

Since by assumption Z/X and QT/Y are in the essential image of A, the cofiber T/X & Z/Y is
also in the essential image of A. But now both 7/X and Z/Y are rectracts of T/X & Z/Y and
thus by assumption in the essential image of A. O

To simplify notation a bit, we will from now on write Gap, (B) instead of Gapy,,(B).

Construction 3.34. Let B be a stable co-category. We define P(Gap, (B)) to be the simpli-
cial co-category given by precomposing Gap,(B) with the functor

s A% — A%
that takes [n] to [n + 1] and a morphism «: [m] — [k] to
s(@): m+1] - [k+ 1]
. 0 ifi=0
[ g
a(i) else.
Now let i: A — B be the inclusion of a full stable subcategory. We define an co-catego-
ry Gap, (B, A) via the pullback square

Gap,(B,A) —— Gap,,,(B)

K Lo

Gay n(i)
Gap,(A) —3 Gap,(B)
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where dp is the map induced by the inclusion {1,...,n + 1} < {0,...,n + 1}. Note that the
map ¢y is compatible with the face and degeneracy maps and thus assembles to a morphism of
simplicial co-categories. We can thus define a new simplicial co-category Gap, (B, A) by the
pullback

Gap,(B,A) —— P(Gap,(B))

! !

Gap,(A) —> Gap,(B)

Remark 3.35. Note that the equivalence of Lemma [3.7]restricts to an equivalence
Gap, (B,A) = Fun(A", B)y, .

where Fun(A”", B)y,, € Fun(A”", B) is the full subcategory spanned by those functors A" — B
where all morphisms AW <5 A" 5 B lje in Wg.a. Furthermore, we observe that this
equivalence is in fact compatible with the canonical face and degeneracy maps. Thus we get
an equivalence

Gap,(B,A) = Fun(A®, By, ,
of simplicial co-categories induced by restriction.

Notation 3.36. Given a simplicial simplicial set U,, we will from now on write |U,| for the
associated diagonal simplicial set. Similarly, when given a bisimplicial simplicial set X, ., we
will write |X, .| for the geometric realization of X, ., i.e. for the diagonal simplicial set of the
associated trisimplicial set.

Construction 3.37. Note that precomposing with the functor A" — A® induces a morphism
ig: B — Fun(A", B)y,, = Gap,(B,A).

Considering B as a constant simplicial co-category, we get a sequence of simplicial co-catego-
ries

B — Gap,(B,A) — Gap,(A).
Finally, this induces a sequence of bisimplicial Kan-complexes
Se(B) = S.(Gap,(B,A)) — S.(Gap,(A)). (1)
We now get the following version of [Wal85, Proposition 1.5.5]:

Proposition 3.38. Let B be a stable oco-category and let A C B be a full stable subcategory.
Then the induced sequence

IS «(B)l = |S +(Gap, (B, A))| = IS «(Gap,(A))]

is a homotopy fiber sequence.
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Proof: The proof is a direct adaption of the argument given in [Wal85]: Let us consider the
simplicial simplicial sets

U.: A’ — sSet
[n] = |S. Gap, (B, A)|

and

Vo: A% — sSet
[n] = |S. Gap,(A)l.

Then the sequence (I) from Construction [3.37] yields a sequence of simplicial simplicial sets
SeB)—- U, =V,
and, by [Wal78, Lemma 5.2], as |S. Gap,(A)| is connected, it suffices to see that
IS«(B)l — IS+ Gap, (B, A)l — |S+ Gap,(A)]

is a fiber sequence for all n. For this, we will construct a homotopy commutative diagram

1S.(B)] ~272 15.(B) X IS« Gap, (A)] —225 1S, Gap,(A)]

1 7 i

IS e(B)) —— IS+ Gap,(B,A)] ——— IS, Gap,(A)|

and show that the vertical morphism in the middle is a homotopy equivalence. To do so, we
consider the functor

p: Gap,(B,A) —» B
induced by the inclusion {0} — [7]® onto the element (0, 1) and the functor
8;,: Gap,(B,A) — Gap,(A)

from Construction @ Then we set ¢ = (F,d;), which by construction makes the above
diagram commute. We now consider the functor

ip: B— Gap,(B,A)
from Construction 3.37]and the functor
G: Gap,(A) — Gap,(B,A).
The latter corresponds, under the identification of Remark@ to the canonical functor

Fun(A"!, A) — Fun(A", Wp ),
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that sends an n-simplex a: A" — A in A to the essentially unique n + 1-simplex

G(a): A" — Wp 4,

canonical natural transformations
ip o F — idgap,B.A) and idGap,(8.4) = G © &,
that give rise to a cofiber sequence
ipo F — idgap 84y = G 0 6,

of endofunctors of B. By Corollary[3.29] it follows that the functor |S (i LIG)| is a left inverse
of S .(¢)|. Itis furthermore clear that ¢ o (i l1G) = idpxGap, (1), Which completes the proof. O

Corollary 3.39. Let B be a stable co-category and let A,C C B be full stable subcategories
with C C A. Then we get a homotopy pullback square

IS e(A)] —— 1S+(Gap,(A, O))|

l !

ISe(B)l —— 1S «(Gap,(B, O))|
Here, the right horizontal map is induced by the commutative diagram

Gap,(C) — Gap,(4) <—— P(Gap,(A))

Lo ! l

Gap,(C) —— Gap,(B) <—— P(Gap,(B))

Proof: We have a commutative cube

IS o (A)] > 1S «(Gap, (A, O))]
/ |

IS «(B)|

> 1S +(Gap, (B, O))|

g

M > 15.(0)]

* > 1S.(O)

where the front and back face are homotopy cartesian by the proposition above. Since the
bottom square is obviously homotopy cartesian, it follows that the top square is a homotopy
pullback square, as desired. O
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The main input for the proof of the Fibration Theorem is the following:

Proposition 3.40. Let A — B be a fully faithful functor in Catﬁfrf. Let p: B — B/A be the
canonical functor into the Verdier-Quotient. Then there is a homotopy equivalence

@: |S«(Gap,(B,A))| — IS «(B/A)|
which makes the diagram

1S «(B)I

1S +(Gap, (B, A))] — |S.(B/A)|
commute. Here, the map |S +(B)| — |S +(Gap,(B, A))| is the one from Construction|3.37]
Proof: To abbreviate notation, let us define the trisimplicial sets

Aeoe: AP X AP X A® — Set
([m], [n], [k]) = S n(Fun(A”", B)w,,, )k

and

Bawa: AP X AP x AP — Set

(Im], [, [K]) + Gapy, ™ (B),.

Here, we define Gap,v,‘,/""‘ (B) to be the subcategory of Gap,,(B) on all objects and those natu-
ral transformations whose components lie in Wp 4. We furthermore observe that we have a
canonical identification

Gap,," (B)y = S w(Fun(A", B)w, ,)o
as subsets of Homgse([m]@x A", B). Thus we get a canonical morphism ¢e e e: Beee — Aeee
induced by the degeneracy maps. We would like to show that the induced map of diagonal
simplicial sets |¢. o o is @ Wweak equivalence. By [[GJO9, §IV Proposition 1.9], it suffices to see
that, for all m, k € N, the map of simplicial sets

(pm,o,k: Bm,o,k i ﬂm,o,k
is a weak equivalence. We note that by construction ¢, .« fits into a commutative diagram

P,k

Bm,o,k —> L7{m,o,k

Wg.a

Gap,,”"(B) — Su(Fun(A®, B)w, )k

[ [

Fun([m]®, B) —2— Fun([m]® x AX, B)
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where i is the functor induced by the projection [m]® x A* — [m]®. Now we observe that i
has a left inverse £: Fun([m]® x A¥, B) — Fun([m]®, B), induced by the inclusion

i [m]® x {0} = [m]® x A*,
Furthermore, there is a canonical homotopy

K: A" x [m]? x A* - [m]® x A*

from the identity to the composite [m]® x A* — [m]® x {0} A [m]® x A*, which then induces
a homotopy

H: A' x Fun([m]® x A*, B) - Fun([m]® x A*, B)
between i o & and the identity. It is now easy to check that £ restricts to a map
Aok = Bk
and H restricts to a map
A X Ayt = Aok

and thus ¢,, . & 1S @ homotopy equivalence, as desired.
Now let us consider the morphism

diag: |Aeeel = [Besel,
for every n € N given by the map of sets
diag,: S,(Fun(A", By, )n — S .(Fun(A", By, )o = Gapy,™* (B),.,

which is induced by the diagonal map [n] X {0} — [n] X [1]. Observe that this is a right inverse
Of e o o] In particular, the morphism diag is a weak equivalence as well.

Note that by definition |B, . | is nothing but the diagonal of the bisimplicial set associated
to the simplicial co-category Gaprv »4(B). We observe that the localization functor

y: B— B[Wz41=B/A
induces a map of bisimplicial co-categories
Gap. ™ (B) — S.(B/A). €]

We would like to show that this induces a weak equivalence after applying geometric realiza-
tion. Again by [GJO9, §IV Proposition 1.9], it suffices to see that the induced map

Gap, ™ (B) — S ,(B/A)
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is a weak equivalence for all n. For this, we observe that the equivalence from Lemma
restricts to an equivalence

Gap, ™ (B) = Fun"4(A", B).

Here, we denote by Fun"24(A", B) the subcategory of Fun(A”, B) on all objects and those
natural transformations whose components are morphisms in Wg 4. Note that, since W is
stable under pullbacks, it follows that (B, Wg 4, B) is a category with weak equivalences and
fibrations in the sense of [[Cis19} Definition 7.4.12]. Thus it follows from [Cis19, Theorem
7.6.17] that the canonical functor

Fun(A", B)[Fun"#/(A", B)™'] — Fun(A", BIW},1)

is an equivalence. Note that by assumption A is closed under retracts in B and thus the
subcategory Wp4 C B is saturated by Proposition It follows that the subcategory
Fun"24(A", B) C Fun(A", B) is saturated as well. Hence the canonical functor

Fun"?4(A", B) - Fun(A", BIW5 4, 1)™ = S .(B[W541)

is a weak homotopy equivalence by [Cis19] Corollary 7.6.9] and (I)) indeed induces a weak
equivalence after applying geometric realization.
So, putting all this together, we have constructed a homotopy equivalence

diag Wpa ~
@: |So(Gap,(B,A))| = |Beeel — |Aeeel = |Gap, ™" (B)| — |S«(B/A)],

as desired. Furthermore, it is now easy to see that the explicit map @ constructed above makes
the diagram

IS «(B)I

1S +(Gap, (B, A))] —— IS.(B/A)|
commute, which completes the proof. O

We are now finally able to deduce our version of Waldhausen’s Fibration Theorem [Wal78|,
Theorem 1.6.4]:

Theorem 3.41. Let A — B be a fully faithful functor in Cat{.’frf. Then the induced sequence
1S o (A = IS o(B)] — IS «(B/A)]
is a homotopy fiber sequence.

Proof: We apply Corollary to the sequence of inclusions A “ A — B and thus get a
homotopy cartesian square

IS« (A)] —— 1S+(Gap, (A, A))|

l !

IS «(B)] —— 1S+(Gap,(B, A))|
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It follows that, by composing with the map @ from Proposition we get a homotopy
cartesian square

ISe(B)] —— S «(B/A)]

Moreover, we have |S.(Gap,(4,A))| = |S.(A/A)|, again by Proposition Since A/A =~ x,
the claim follows. O

We would now like to apply this result to exact sequences in Cat®™, for which we will need
one more important theorem:

Theorem 3.42. Let B be a stable co-category and let B' C B be a full stable subcategory such
that every object in B is a retract of an object in B'. Then there is a homotopy pullback square

K(B") — K(B)

l l

Ko(B") —— Ko(B)
Proof: See [Lurl4, Lecture 18, Proposition 1]. O
Combining the last two theorems, we finally get the following result:
Theorem 3.43. Let A — B — C be an exact sequence in Cat?™. Then the induced sequence
K(A) - K(B) = K(C)
is a homotopy fiber sequence.
Proof: By Proposition[3.41] we have a homotopy fiber sequence
IS« (A = IS o(B)] = IS o(B/A).
The commutative diagram

IS e(A)] ——— 1Se(B)] ——> |S(B/A)]

A
1S<(2)l
hofib(IS (g)) —— IS(B) —== IS+(C)|
induces a commutative diagram of long exact sequences of homotopy groups. By assumption,
we have that the induced map (B/A)%™ — C is an equivalence. Thus we can regard B/A as
a full subcategory of C such that every object in C is a retract of an object in B/A. It follows

from Theorem [3.42]that in the diagram

Kiy1(B) —— Ki1(B/A) ——— Ki(A) > Ki(B) > Ki(B/A)

Bl o o]

Ki1(B) — Kix1(€) — mipi(hofib(|S . (g)D) > Ki(B) > Ki(C)
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all vertical arrows except the middle one are isomorphisms, if i > 1. Therefore the middle
vertical map is an isomorphism for all i > 1 as well.

If i = 0, the two left vertical maps are still bijective and the rightmost map is still injective
by Proposition[3.25] Now, the refined version of the 5-lemma tells us that the middle vertical
map is an isomorphism.

It follows that 7r;(¢) is an isomorphism for all i > 1. By Whitehead’s theorem, the canonical
map Q(p): K(A) — Qhofib(|S .(g)|) ~ hofib(K(g)) is a homotopy equivalence and we get the
claim. O

3.4. Non-Connective K-Theory

In this section we will use the results developed in the last two sections in order to con-

struct a localizing functor K: Cat™® > Sp, such that Q* o K ~ K. Here, we denote by Sp

the co-category of spectra and by Q* the infinite loop space functor. We will call K the non-
connective K-theory functor. We will roughly follow [BGT13} §9].

Definition 3.44. A functor
E: Cat™ = T

to a stable co-category T is called localizing, if it takes exact sequences to fiber sequences
inT.

Construction 3.45. Let « be a regular uncountable cardinal. Consider the functor
F: Cat™ — Cat?"

given by sending A to Ind(A)*°™P. Note that, for any A € Catlo’frf, there is a canonical functor

A — Ind(A)-°°™P. We will denote its cofiber in Cat{.’frf by E(A). This construction assembles
to a functor

E: Cat™ — Cat®™™ .
By construction, we get a sequence of natural transformations
idCalgsrf —-F—>E
such that, for any A € Catgfrf, the sequence
A — F(A) - E(A)
is an exact sequence in Cat™" .

Lemma 3.46. The functors F and E preserve exact sequences.

Proof: The functor F preserves exact sequences by Proposition and Proposition
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Thus it is clear that, for an exact sequence
ASBSC,

the induced sequence E(A) M E(B) m E(C) is still a cofiber sequence.

It remains to see that E(u) is fully faithful. We recall that the classes Wr) 4 and Wgp) p are
closed under pushouts. For x € F(A), let us denote by Wg)a(x) the full subcategory of the
slice F(A),, of all arrows that lie in Wg4) 4. Analogously we define Wgp) p(y) for y € F(B).
Then it follows from [Cis19, Theorem 7.2.8] and [[Cis19, Theorem 7.2.16] that, for x, x" €
F(A), there is a canonical equivalence

colim ma X,7) — ma X, x
(X' >2)EWra)a(X') pF(A)( ) pE(A)( )
and we get an analogous formula for the mapping space in E(B). So we observe that, in order
to prove that E(u) is fully faithful, it suffices to see that the inclusion of the full subcategory

Wr)a(x) = Wr) s(Fu)(x))

is cofinal. To simplify notation, we will consider F(A) as a full subcategory of F(B) and omit
the F(u) from the notation. So let a: x" — zp be in Wg(p) p(x"). We would like to show that the
comma object

Wrya(X)as = Wea)A(X) X 500) WeB).8(X oy

is weakly contractible.

For this, we make the following observation: Let y: x" — z be any morphism in Wgg) z(x").
Then there is a morphism 8: x” — z" in W) a(x’) and a morphism 6: z — z’ such that we
have 8 =~ ¢ o y. Let us prove this observation:

Consider the fiber sequence

Q@/Y) = ¥ 5z

in F(B). By assumption Q(z/x") is in B C F(B). By construction of F(A), we can find a filtered
diagram ¢, : I — A such that

x' ~ colimec;.
1

Because Q(z/x’) is compact, there is an iy € [ such that the map Q(z/x") — x’ factors
through ¢;, — x’. We now consider the cofiber sequence

B
cip = X' = X' [cqy,

which shows that the map 8: X’ — x'/c;, is in Wg@u)4(x’). But since Q(z/x") — x’ factors
through ¢;, — x’, there is a commutative diagram

Qz/x') —— X’

|

¢y — X'
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and so we get an induced morphism of cofibers 6: z — x’/c;, with 8 = § oy, as desired.
We will now use this to show that the category Wga) 4(x”),, is cofiltered an thus contractible.
Soletd: K — Wgya(x')a be a finite diagram. Then the composition

P K = Wraya(X)oy = W) 5(x)ay
can be extended to a functor
P K x A — Wrg) p(x)a/,

as Wrp) p(x") and thus also Wgp) p(x"),, have finite colimits. But now the observation shows
that we can extend p to a diagram

Pl (K A% o AY — Wiy (X )y

such that the composite

A 5 Al e (K % A% Ty A 2 Wi (¥ )
lies in Wg(aya(X")o/. Furthermore, the inclusion
(K A% Iy A' - K A
is inner anodyne and we get an induced morphism
P K+A - WeB).8(X /s

whose restriction to K * AV factors through W a(x'), and extends d. Thus we get the
claim. |

Proposition 3.47. Let A € Catgjrf. Then the space K(E(A)) is contractible.

Proof: We note that E(A) admits countable coproducts. Consider the exact functor G given by
the composition

A coprod
E(A) = 1_[ E(A) —5 E(A).
neN
We have a canonical natural transformation idg4) — G, given by the inclusion into the first
factor. Then the sequence of functors

. id
ldE(A) -G l—> G

is a cofiber sequence. Thus we have that |S 4(idga))| + IS «(G)| = |S+(G)| by Theorem
Now, adding |S .(ZG)| shows that |S ,(idg(4))| = 0 by Example [3.30} O
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Construction 3.48. Consider the functors
K':=KoE': Catl™ - 8

for all n € N. By Theorem and Proposition for any A € Cat®™, the exact sequence

A — F(A) = E(A)
gives us a natural equivalence of pointed spaces

K(A) ~ QK(E(A)).
It follows by induction that we get an equivalence of functors

Q"oKoE'~K

for all n. Thus we get an induced functor

K: Ca®® S lim(... >S5, 55, 5 5)~sp

into the inverse limit, which is equivalent to the co-category of spectra. Furthermore, since E
preserves exact sequences and since € preserves fiber sequences, the functor K sends exact
sequences to levelwise fiber sequences in the inverse limit and thus to fiber sequences in the
category of spectra. Hence the functor K is localizing. Furthermore, we have that Q* oK = K
by construction. We call K the non-connective K-theory functor.

4. Algebraic K-Theory of Schemes

This chapter is devoted to studying the algebraic K-theory of schemes. In section [d.1] we
will construct a suitable notion of the derived category of quasi-coherent modules D(X) over
a scheme X. We will do this in a way ensuring that the assignment X +— D(X) is a Zariski
sheaf and use this to deduce some important results such as the flat base change formula
(Theorem [4.30).

In section[d.2) we will define the subcategory Perf(X) C D(X) of perfect complexes and de-
fine the K-Theory of a scheme X to be the K-theory of Perf(X). We will also show that D(X) is
compactly generated (see Theorem [4.43)), which will allow us to apply the results of the [third]
chapter to deduce a localization sequence of non-connective K-theory spectra (see Corol-
lary [4.46).

In section [£.3] we will use these results to conclude that algebraic K-theory satisfies Nis-
nevich descent.

The key ideas of this chapter are taken from a series of lectures at the University of Regens-
burg given by Adeel Khan in 2017 (see [Khal7]]).
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4.1. Quasi-Coherent Modules and Derived Categories

Construction 4.1. Let R be a ring. Consider the category Modg whose objects are given by
pairs (f, M) where f: S — R is a ring homomorphism and M is an S-module. A morphism
of two pairs

(f:S >R M) - (f:S8 >R M)
is given by a morphism of R-modules
M®s R—> M Qg R

and composition is defined in the obvious way. For a ring homomorphism a: R — T, we get
an induced functor

a*: Modg — Mody
given by mapping an object (f, M) to the object (@ o f, M) and sending a morphism
s:(f:S>RM—>((f:S">RM)

given by ¢: M ®5 R — M’ ®s+ R to the morphism a*(s): (@ o f, M) — (@ o f',M’), which is
given by the unique morphism ¢ that makes the diagram

T
(M®s R)or T 2255 (M’ @5 R)® T

M@ T —— 3 M T

commute. For a second ring homomorphism 8: T — T’, one checks that we get an equality
of functors 8" o @ = (8 o @)*. Thus the construction Mod,- defines a functor of 1-categories

Mod,_,: Ring — Cat.

Remark 4.2. Let R-Mod denote the ordinary category of R-modules and observe that there
is a canonical functor

R -Mod — Modg
given by sending an R-module M to the pair (idg, M). Note that it has a quasi-inverse
Modg — R-Mod

which sends a pair (f: S — R, M) to M ®s R. Thus R-Mod is canonically equivalent to Modg
and, for a ring homomorphism @: R — T, the functor a* from above is identified with the
functor

R-Mod — T -Mod

given by extension of scalars along @. However, the construction (—) -Mod: Ring — Cat does
not give rise to a functor of 1-categories on the nose, as base change is only well defined up to
unique isomorphism. The Modg-construction is a rectification which fixes this issue.
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Let us recall the following well-known result:

Proposition 4.3. Let R be a ring. Then there is a proper combinatorial model structure on the
category of chain complexes of R-modules Ch(R), where

i) a map is a fibration if and only if it is a level-wise surjection and
ii) a map is a weak equivalence if and only if it is as quasi-isomorphism.

Proof: See [Lurl2, Proposition 7.1.2.8]. Here, everything is shown except for right proper-
ness, which is just an easy diagram chase. O

Construction 4.4. For a ring homomorphism f: R — T, we get an adjunction
—Q®rS: Ch(R) = Cn(T) :resI;,

where the right adjoint preserves fibrations and trivial fibrations. So this is in fact a Quillen
adjunction and it follows that the left adjoint preserves cofibrations and weak equivalences
between cofibrant objects by Ken Brown’s Lemma.

Thus the canonical equivalence Modg — R-Mod equips the category Ch(Modg) with a
model structure such that, for a morphism f: R — T, the induced functor

Ch(Modg) — Ch(Mody)

preserves cofibrations and weak equivalences between cofibrant objects. By Ch(Modg)°® we
will denote the full subcategory of Ch(Modg) spanned by the cofibrant objects. We will
write Wy for the class of weak equivalences between cofibrant objects. By the above, we
can now define a 1-functor

®: Ring — sSet”
to the 1-category of marked simplicial sets by mapping a ring R to the marked simplicial set
(N(Ch(Modg)®)), W),
where N(-) denotes the nerve.
4.5. There is a canonical functor of 1-categories
i: Cat!, — sSet”
which takes an co-category C to the the marked simplicial set C* whose underlying simplicial
set is C and the marked edges are the equivalences. Let us write Joy for the class of Joyal

equivalences in Cat!, and Mark for the class of marked equivalences in sSet™. Then i takes
Joyal equivalences to marked equivalences and thus induces a functor

F: Caty, = Cat'_[Joy™'] — sSet*[Mark™].

It turns out that F is an equivalence of co-categories (see [Lur0O9, Theorem 3.1.5.1]), so
let G denote an inverse. Then one checks that, for a: (C, W) — (C’, W’) a morphism of
marked co-categories, the functor G(e) is equivalent to the functor

CIw1 - ' w

induced by the universal property of the localization.
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Definition 4.6. Let Aff denote the category of affine schemes. We define D(-): Aff*® — Cat.,
to be the functor given by the composite

AP = Ring 2 sSet* — sSet*[Mark™'] S Cat..,

where @ is the functor from Construction[#.4]and G is the functor from For a ring R, we
call the oco-category D(R) the derived category of R. For a morphism f: Spec (A) — Spec (B)
of affine schemes we denote the induced functor D(F): D(B) — D(A) by f~.

Remark 4.7. Let us describe the above construction more explicitly: The co-category D(R) is
equivalent to the localization

Ch(Modg)°[(We)™'1.
It follows from [[Cis19} Theorem 7.5.18] that D(R) is equivalent to the co-category
Ch(R)[Wz"]

with Wg denoting the collection of all quasi-isomorphisms. Furthermore, we may, for a mor-
phism f: Spec(T) — Spec (R) of affine schemes, identify the induced functor

*: D(R) — D(T)

with the left derived functor (in the sense of [Cis19, §7.5.23]) of the extension of scalars
functor

—®g T: Ch(R) — Ch(T).
We make the following immediate observations:
Proposition 4.8. The co-category D(R) is presentable.

Proof: Since the above model structure on Ch(R) is combinatorial, this follows from [[Cis19,
Theorem 7.11.16]. O

Proposition 4.9. Let f: Spec(T) — Spec(R) be a ring homomorphism. Then the induced
functor

£ DR) - D(T)
has a left adjoint.
Proof: This directly follows from Construction .4 by [Cis19, Theorem 7.5.30]. O
Combining these two results we get:
Corollary 4.10. The functor D: Aff? — Cat,, factors through Prt.

We furthermore note the following important property:
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Proposition 4.11. The oco-category D(R) is stable.

Proof: We have already seen that D(R) has all limits and colimits and it is an easy consequence
of [Cis19, Theorem 7.5.18] and its dual that D(R) is pointed. Thus by [Lurl2, Corollary
1.4.2.27], it suffices to show that the loop space functor

Q: D(R) - D(R)

is an equivalence. For this, we consider, for any C, € Ch(R), the mapping cone complex
Cone(C,). We get a canonical pullback square

Cf-1] —— 0

b

Cone(C.)[-1] —2= C.

where p is an epimorphism and all objects are fibrant. Thus the above square is in fact a
homotopy pullback square. Furthermore, the object Cone(C,) is quasi-isomorphic to the zero-

object. It follows that there is a canonical equivalence C,[—1] — QC,. Thus the shift functor
[-1]: D(R) —» D(R)

is equivalent to the loop space functor. Since the shift functor clearly has an inverse by shifting
in the other direction, the claim follows. O

The next goal will be to show that the functor D(-) is a Zariski sheaf of co-categories.

Lemma 4.12. Let f;: Spec(B;) — Spec(A) be a jointly surjective finite collection of flat
morphisms. Then the family {f}; is jointly conservative.

Proof: Since D(I]; B;) =~ []; D(B;), we may assume that our collection consists of a single
faithfully flat morphism f: Spec (A) — Spec (B). Let @: x — y be a morphism in D(A). Note
that, since f is faithfully flat, the extension of scalars functor

—®pA: Ch(A) — Ch(B)

preserves quasi-isomorphisms and thus the left derived functor f* is just the functor induced
by the universal property of the localization. So, if the morphism f*(@) is an equivalence, we
have that cofib(a) ®3 A ~ 0 and, in particular,

0 = H,(cofib(a) ® A) = H,(cofib(a)) ®p A.

Now, since f is faithfully flat, it follows that H,(cofib(a)) = 0 and thus cofib(e@) ~ 0 and the
claim follows. ]

We are now ready to prove the following descent result:
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Proposition 4.13. Consider a Zariski square

Spec (B;) —— Spec (B))
bl
Spec (By) ——3 Spec (A)

of affine schemes (i.e. the square is cartesian, all morphisms are open immersions and
Spec (A) = Spec (By) U Spec (By)). Then the induced square

D(4) —— D(B))
D(B,) —— D(B3)
is a pullback square of co-categories.

Proof: An object K in the pullback D(B,) Xp(s,) D(B)) is given by a tuple (K, Ki,y), where
K; € D(B;) and v is an equivalence

o Yoo
i"(K1) = j7(K2)
in D(B3). We want to show that the induced functor

F: D(A) = D(B,) X, D(B))
K — (i*K, j*K, )

is an equivalence. Here, the morphism ¢ is the natural equivalence witnessing the commu-
tativity of the above diagram. We observe that F has a right adjoint G, where, for an ob-
ject (K, Ki,7), the image G(K>, K, ) is defined by the pullback square

G(K29K1,7) % ]*Kl

l l

Ky ——— i.j.] K>

A

Here, the bottom horizontal map is induced by the unit map id — j,j** and the right vertical
map is given by the composite

JuKy = Ky - Jeilj Ka . ij.Jj" Ka.
We would now like to see that, for K € D(A), the unit map
n: K = i,0"K X, j ik JJ K

is an equivalence. By Lemma [.12] it suffices to see that i*n and j*n are equivalences. Un-
winding this, we have to show that

K ®x By — (i.i"K X;,j ik j«J K) ®a By
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is an equivalence and the same for tensoring with B,. We compute

(i.i"K X, ji ik JoJ K) ®a By = K ®4 By ®4 Bl Xko,8,0,8, K ®1 B1 ®4 B)
~ K ®u B3 XK®uB3 K ®4 By
~ K®, B

and inverse of this equivalence is precisely the map i*n. This works similarly if we tensor with
B, and it follows that F is fully faithful. To prove that F is an equivalence, it now suffices to
see that G is conservative. For this, we observe that, for a morphism

¢: (K2, K1, y) = (L2, Ly, 6)

in D(B») Xp(s,) D(B1), the morphism i*(G(¢)) is equivalent to the morphism given by applying
the first projection functor

pr; : D(B>) Xp(s,) D(B1) — D(By)

to ¢. The analogue holds for j*(G(¢)) and the second projection. It follows that G is conser-
vative, since the functor

pr; X pr,: D(B3) Xp,) D(B1) — D(B,) x D(B))
is conservative. O

From now, on let us fix a quasi-compact and quasi-separated scheme S .

Definition 4.14. Let Aff;s denote the category of finitely presented affine S-schemes. We
equip Aff,s with a topology as follows: A finite collection {f;: U; — X}; generates a covering
sieve, if

— every f; is an open immersion and
— the induced morphism [[; U; — X is surjective.

We call the resulting topology the affine Zariski topology and Aff;s equipped with this topol-
ogy the (big) affine Zariski site.

One has an analogous version of Theorem|[I.T5|for the Zariski topology. The proof is similar
as well and will be skipped here.

Theorem 4.15. Let ¥ € Psh(Aft)s). Then F is a sheaf with respect to the affine Zariski
topology if and only if, for every Zariski square of affine schemes

Spec (B3) ——% Spec (B;)

Lo,

Spec (By) —— Spec (4)
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the induced square

F (Spec (A)) ——> F(Spec (B1))

! !

F (Spec (By)) ——> F (Spec (B3))
is a pullback square in S.

4.16. We will now briefly discuss sheaves of co-categories: Let (C, 7) be a site with pullbacks.
We will call a functor

F: C — Cat
a 7-sheaf of co-categories if, for every covering family {U; — X};, the canonical map

F(X) — 952(1_[ )F(U,-l Xx ... xXx U;)
] genny In

is an equivalence. We write Sh(C, Cat,) € Fun(C, Cat.,) for the full subcategory spanned by
the 7-sheaves of co-categories.
Recall that to an co-category C one can associate a simplicial space

Nsegal(C): A® - S
[n] = Fun(A",Q)".

It is a well-known fact that this defines a fully faithful functor
Nyegar: Cato, = Fun(A, S),

whose essential image is spanned by the so called complete segal spaces. These are all the
functors F': A’ — S such that, for all m € N, the induced map

F([m]) - F{0 < 1}) XFpqy ... Xp@-1 F({n — 1 < n})

is an equivalence. Furthermore, if we denote by J the unique co-groupoid with two objects
and one equivalence between them, then the map

DO e mapFun(Aup S) (Nsegal(‘])7 F)

induced by I — {0} is an equivalence. For the full subcategory of Fun(A°P, S) spanned by the
complete segal spaces, we will write CSS. Furthermore, we observe that the inclusion

CSS — Fun(A?, S)

preserves all limits and therefore limits of complete segal spaces are computed pointwise. It
follows that we may identify the full subcategory

Sh.(C, Cat,) € Fun(C, Cat.,)
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with the full subcategory of Fun(A°P, Sh.(C)) spanned by all functors F: A°® — Sh,(C) such
that, for all ¢ € C, the functor

F(=)c): A® > S

is a complete segal space. This description allows us to upgrade many results, such as Theo-
rem [@4.15]and Proposition #.21] below, from sheaves of spaces to sheaves of co-categories.

Corollary 4.17. The functor D: Aff(/’g — Cat, is a Zariski sheaf of co-categories on Affs.
Our next goal is to extend the construction D(—) to non-affine schemes.

Definition 4.18. Let Sch,s denote the category of all finitely presented S-schemes. We
equip Sch/s with a topology as follows: A finite collection {f;: U; — X}; generates a cov-
ering family if

— every f; is an open immersion and
— the induced morphism [ [; U; — X is surjective.

We call the resulting topology the Zariski topology, and Sch,s equipped with this topology the
(big) Zariski site.

Remark 4.19. The obvious analogue of Theorem [4.15]still holds in the non-affine case.

4.20. The inclusion i: Aff;s < Schs preserves pullbacks. Also it induces an adjunction
of co-categories of presheaves

¢': Psh(Sch/s) == Psh(Aff/s) :i.,

where ¢ denotes the functor given by precomposition with i and where i, is given by right
Kan-extension. Furthermore, any object in Sch/s admits a covering by objects in Aff /s, thus
[Hoy15, Lemma C.3] implies:

Proposition 4.21. The adjunction ¢ H i, restricts to an equivalence of co-categories
Shyz,(Schys) = Shyz, (Aff)s).

In particular, a presheaf  on Schys is a Zariski sheaf if and only if it is the right Kan-extension
of a Zariski sheaf on Affs.

Corollary 4.22. A functor F: Sch(/)g — Cat,, is a Zarsiki sheaf of co-categories if and only if
it is the right Kan-extension of a Zariski sheaf on Affs.

Definition 4.23. We define the functor D: Schjf — Cate to be the right Kan-extension

along i: Aﬂ(/’sp - Sch(/’Sp of the functor D: Aff‘/)§ — Cat,, from Deﬁnition We call D(X)
the derived category of X.
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Remark 4.24. It follows from Corollary that D is a Zariski sheaf on Sch/s. Spelling
out the definition, we see that, when restricted to affine schemes, the functor D is equivalent
toD: Aff;s — Cat, as defined before. For a general scheme X € Schys, the canonical map

D(X) - Spec(lf{?elAﬂf/x D(A)

is an equivalence.

Remark 4.25. We will now compare our derived co-category D(X) with an alternative, more
classical definition. For this, consider the abelian category Mody of all Ox-modules. This is a
Grothendieck abelian category and it follows that the localization of the category Ch(Mody) at
the quasi-isomorphisms is a presentable stable co-category D(Mody, ) (see [Lur12, Proposition
1.3.5.15] and [Lur12| Proposition 1.3.5.21]). We then define D’(X) to be the full subcategory
of D(Modp,) spanned by all complexes whose homology objects are quasi-coherent Ox-mo-
dules. In order to see that D’(X) and D(X) agree, we observe that an argument similar to the
one given in Proposition [d.13|shows that the construction

D’: Sch%’( — Cate

defines a Zariski sheaf. Thus, it suffices to see that the two constructions agree in the affine
case. This follows as in [Sta20, Tag 06Z0]. In particular, it follows that the homotopy cate-
gory ho(D(X)) agrees with the classical derived category Dqcon(X) as defined in [[Sta20, [Tag
06YZ].

We will now study further properties of the sheaf D. We start with the following easy
observation:

Proposition 4.26. The functor D: Sch(/’sp — Cat,, factors through Prk.
Proof: This is clear from Corollary ff.10]since the inclusion
Prh — Cat,
preserves all limits by [LurO9, Theorem 5.5.3.13] and [Lurl2| Theorem 1.1.4.4]. O

Notation 4.27. Let f: X — Y be a morphism in Sch/s. As above, we will denote the induced
functor

D(f): DY) — D(X)
by f* and call it the inverse image functor. By Proposition [4.26] it admits a right adjoint
Je: DX) - D(Y),
which we will call the direct image functor.

4.28. Let X € Sch/g be a scheme and let X = UUYV be an open covering. Let jy and jy denote
the inclusions from U and V, respectively, to X. For K € D(X), we will write K|, for j7,(K)
and Ky for j;,(K). We observe that, since D satisfies Zariski descent, the canonical functor

F: D(X) = D(U) xpwnv) D(V)


https://stacks.math.columbia.edu/tag/06Z0
https://stacks.math.columbia.edu/tag/06YZ
https://stacks.math.columbia.edu/tag/06YZ
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is an equivalence. We note that, as in the proof of Proposition we can write down an
explicit right adjoint to F such that the unit is an equivalence. Spelling out the details, we see
that the unit is given by the canonical morphism

K — jus Kly X junvs Klyay Jv« Kly

which is therefore invertible. In particular, it follows that, if we are given a morphism f: X —
Y, then the canonical morphism

JK = (f 0 ju)s Kl X(sojua). Kigay (f © Jv)K
is an equivalence.
Let us quickly recall the following terminology from [Khal6, Ch. 0, §3.3]:

Definition 4.29. We will say that a commutative square

c—lsop

lg* lq*

oy %

is vertically right adjointable if the base change natural transformation
g = q.p

is invertible.

We are now ready to proof the following important result about the compatibility of the
inverse and the direct image functor:

Theorem 4.30 (Flat base change). Consider a pullback square

~

X/ P

q

o

x

~

in Schys, where g is flat and f is quasi-compact and quasi-separated. Then the induced square

D(Y) —— DY)

b

DX) — DX)).

is vertically right adjointable.
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Proof: Let us start by assuming that all schemes in discussion are affine, so that we are given
a square

Spec (T) L) Spec (S)
b L
Spec (A) —)f Spec (B)

For K € D(A), the base change natural transformation is given by the canonical equivalence
K®5S > (K®4A)®pS > K®s (A®5S) ~ K@, T,

which proves the affine case.

The strategy of the proof is to reduce the situation to the affine case. We will start by
reducing to the case where Y’ and Y are affine. For this, we pick an open covering ¥ =
Ui U ... U Uy by finitely many affine opens. Let us write U = U; Xy X. Now, by Zariski
descent, the canonical functors

D(Y) — 1’2?(.[_]' )D(Ui] Xy ... Xy U;)
Il genny In

and

DX) - lim [ | DW xx...xx U})

neA |

are equivalences. For every injective morphism «: [n] — [m] in A, we consider the square

I_l D(Uil Xy ... Xy Ui,,) — I_l D(Ui| Xy ... Xy U,'m)
(i1 5eeerin) (1seeslm)

l l

[] pW; xx...xxU)) — [] DW; xx...xx U})

im
() (1 seeeslim)

and claim that it is vertically right adjointable. This square is the product of the squares

DU’ xy...xy U;,) — 1_[ D(U;, Xy ... xy U;)

(i1 seeerim)EI
l l )

D) xx ... xx Uj) — [ ]| DWW xx...xx U})

im
(@i1seesim)€l

for every (ji,...,Jjn) € {1,...,k}" where I is the set of all (iy,...i,) € {1,...,k}" that agree
with (jo, ..., ju) When restricted along @. Now, since taking right adjoints commutes with
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products, it suffices to show that (2)) is vertically right adjointable. Again, since taking products
commutes with taking right adjoints, we may reduce to the squares

D(Uj] Xy ... Xy an) —_— D([J,’l Xy ... Xy Uim)

l l

])(U;l Xx ... Xy U;") — ])(Ul,l Xx ... Xx Ul,m)
for all (iy,...,i,) € I, that are induced by the pullback squares of schemes

U;l Xx...XxU{ —_— Ui1 Xy ... Xy U,

In

| l

U}l Xx...XxU;-n —_— Ujl Xy...)(ij’x

im

Here, the vertical arrows are open immersions and the horizontal arrows are quasi-compact
and quasi-separated. As Y is not necessarily separated, the intersection Uj Xy ... Xy U},
might not be affine. The intersection is, however, separated.

Let us assume that we have already proven the theorem for the special case that the bottom
right corner of the given pullback square is separated. Then (T)) is vertically right adjointable.
It then follows from [Lur12| Corollary 4.7.4.18] and [Lur09, Lemma 6.3.5.7] that the square

DY) — | | DWW

l l 3)

D) — [ [DW)

is vertically right adjointable. So in the cube

[ [¥ V) ————— [ [V U

X'/l ‘ Y’/

|

]T[U,-' )]T[Ui
L~ e

\
7

~

the statement of the theorem holds for the bottom and the back square. By Zariski descent,
restriction to an open covering is conservative, so the statement of the theorem holds for the
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front square if it holds for the top square. But we can refine the covering {Y’ Xy U; — Y’} by
affine schemes and conclude that the statement of the theorem holds for the top square, because
we have seen above that squares like (3)) are vertically right adjointable. So the statement of
the theorem holds for the front square.

Hence, if we prove the theorem for Y separated, we are done. We can now rerun the argu-
ment above with Y separated, but then the intersections U, Xy ... Xy U}, are affine and thus
we may reduce to Y being affine. Furthermore, we can refine Y’ by an affine open covering
and thus reduce to Y’ being affine as well. This completes the first reduction step.

Now we can cover X by finitely many affine opens and use induction over the size of the
cover. We already know that the theorem holds in the affine case and, by induction, we may as-
sume that there are open immersions jy: U = Spec (A) — X and jy: V = UL, Spec (B;) — X,
such that the theorem holds for the outer square of the commutative diagram

X, s x Ly
RN
vy x Ly

and similarly for V. Now, we observe that in the commutative square

(e

D(Xy) Xpxyn, D(Xy) —— D(X")

qy Xq;,m,lfvT q*T

D(U) xpwnv) D(V) <= D(X)
uJv
the horizontal arrows are equivalences by Zariski descent and thus we have that, for K € D(X),

a'K = ju.(qy Klv) X, @y Koo Jv(@y KIv),
as in[4.28] If we apply p., we see that

p-(y.(qy Klp) = & ((f © ju)« Klv),

by the affine case and similarly for V, by the induction hypothesis. Thus, by [4.28] it remains
to see that

P+Juavs@uny Kluav) = &°((f © juav)s Klyay)-

Note that this is not clear, as we may not be able to cover U N V by n affine opens, as the
intersections Spec (A) N Spec (B;) may not be affine if X is not separated. So we can not apply
the induction hypothesis immediately. However, we observe that it suffices to see that the
theorem holds for the square

Xyoy — Xy
\Lﬂlunv lth/

unv — U

But since U is affine, the intersection U N V is separated, so we can now rerun the above
argument to finish the proof. O
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Corollary 4.31. Let j: U — X be a quasi-compact open immersion. Then j. is fully faithful.
Proof: This follows from applying Theorem [4.30]to the pullback square

U=—=VU
[
U——X

(]

Proposition 4.32. Let S be a quasi-compact quasi-separated scheme and let f: X — Y be
a morphism in Schys (in particular, the morphism f is quasi-compact and quasi-separated).
Then f,.: D(X) — D(Y) preserves all colimits.

Proof: Let us first assume that X = Spec(B) and Y = Spec (A) are affine. In this case, the
functor

£.: D(B) - D(A)

is induced by the restriction along the ring homomorphism A — B. Furthermore, we have
already seen that f, is exact, so it suffices to see that f; preserves coproducts. Since coproducts
in D(B) are computed as ordinary coproducts in Ch(B), this is clear.

We now reduce the general situation to the affine case: The proof is very similar to the
proof of Theorem .30] but let us quickly sketch it: First of all, we may immediately reduce
to Y being affine by applying Theorem [#.30} Again, we use induction to write X = U U V,
where U = Spec (A) and Spec (B) = Spec (B;) U ... U Spec (B,). Then we assume that the
claim holds for f o jy and f o jy. By[.28] it suffices to show the claim for the composition

Unvesxby

But now, the intersection U N V is separated. So we just rerun the above argument and get
the claim. O

4.2. Perfect Complexes and Compact Generation

Definition 4.33. Let R be a commutative ring. A chain complex C, of R-modules is called a
perfect complex if it is quasi-isomorphic to a bounded complex of finitely generated projec-
tive R-modules. We will denote by Perf(R) the full subcategory of D(R) spanned by the perfect
complexes.

Proposition 4.34. Let R be a ring. Then Perf(R) C D(R) is the full subcategory spanned by
the compact objects of D(R).

Proof: The classical statement in [Sta20, Tag 07LT] tells us that the objects of Perf(R) are pre-
cisely the compact objects in the homotopy category ho(D(R)), in the sense that, for any F €
Perf(R), the canonical map

@ Homypomry (F, Ei) — Homyom(ry) (F , @ Ei)

iel iel


https://stacks.math.columbia.edu/tag/07LT
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is bijective. But now [Lurl2, Proposition 1.4.4.1] shows that this is equivalent to ¥ being a
compact object in the co-category D(R). O

We will now extend our definitions to schemes.

Definition 4.35. Let X be a quasi-compact quasi-separated scheme. We define Perf(X) to
be the full subcategory of D(X) consisting of those complexes F such that there is a cov-
ering {U; = Spec (A;)}ie; by affine opens with ji(¥) € D(A;) a perfect complex. Here, the
map j;: U; — X denotes the inclusion.

We now get the following generalization of Proposition

Proposition 4.36. Let X be a quasi-compact quasi-separated scheme. Then Perf(X) C D(X)
is given by the full subcategory spanned by the compact objects of D(X).

Proof: Let us first assume that 7 is a compact object of D(X). Now let {U;};c; be any covering
of X by affine opens. By Proposition @, the functor j7: D(X) — D(U;) has a right adjoint
which preserves colimits and therefore j} preserves compact objects. So by Lemma[zf_ﬂ], it
follows that j7(¥) is a perfect complex and thus ¥ € Perf(X).

Let us now prove the converse. By assumption, there is a cover of X by finitely many affine

.....

induction on n. For n = 1, the claim follows from Proposition For n > 1, we write U
for Spec (A;) and

V= U Spec (4;)

such that X = UUV. Then, by induction, both j;,(¥) and j; () are compact. By Remark[4.24]
we have a pullback square

D) — 23 DY)

b |

DWU) — DU NV)
and thus a natural equivalence of functors
mapy,x, (F, —) = mapD(U)(jZ(T)’ Ju(=) Xmapp oy Gl yeys o Olyoy) maPD(v)(ff/(T), Jv(=)).

Since restriction to U N V preserves compact objects, all components in this fiber product
preserve filtered colimits. Thus the claim follows, as filtered colimits commute with finite
limits in S. O

Remark 4.37. By Proposition 4.32] it follows that, for a quasi-compact and quasi-separated
morphism f: X — Y, the inverse image f* preserves compact objects. Therefore, by the
above Proposition, it restricts to a functor

Perf(f): Perf(Y) — Perf(X).
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Furthermore, it follows from the above proposition that, if U and V are quasi-compact open
subschemes of X and X = U U V, then the induced square

Perf(X) ——— Perf(V)

l |

Perf(U) —— Perf(UNV)
is a pullback square. Thus the functor
Perf: Sch)¢ — Cate
is a Zariski sheaf.

Definition 4.38. Let X be a quasi-compact and quasi-separated scheme. We define the alge-
braic K-theory space of X to be K(X) = K(Perf(X)). Similarly, we define the non-connective
algebraic K-theory spectrum of X to be K(Perf(X)).

Definition 4.39. Let X be a quasi-compact and quasi-separated scheme and let U be a quasi-
compact open subscheme. Then we define D(X)y to be the full subcategory of all objects F €
D(X) with F 1y = 0. Furthermore, we define Perf(X)y = D(X);;"™" and K(X)y = K(Perf(X)y)
and similarly K(X)y = K(Perf(X)y).

We would now like to apply the results of the last section to deduce a cofiber sequence
KX)y — K(X) - K(U).

Our first goal is to show that D(X)y is compactly generated. For this, we will use the
following convenient criterion:

Proposition 4.40. Let C be a presentable stable co-category. Then C is compactly generated
if and only if there is a set of compact objects S C Ob(C) such that an object F € C is zero if
and only if

mo(map(X'X, F)) = {x}
forall X € S andn € Z.

Proof: 1t is clear that, if C is compactly generated, the set of compact objects satisfies the
assumption.

For the converse, let us consider the full subcategory Cy of C that is spanned by finite
colimits of objects of the form £"X for X € § and n € Z. In particular, all objects in Cy are
compact. Thus the induced functor F: Ind(Cy) — C is fully faithful and preserves colimits.
Hence it has a right adjoint G. Let us now pick A € C. We would like to show that the counit

n: FGA — A

is an equivalence. For this, we observe that G(cofib(r)) ~ 0 and, since F is fully faithful, it
follows that

map,(X"X, cofib(ny)) =~

forall X € S and n € Z, as "X € Cy. By assumption, it follows that cofib(r;7) ~ 0 and so 7 is
an equivalence as C is stable. O
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Definition 4.41. We will say that a presentable stable co-category C is compactly generated
by a single object if, in the above proposition, the set S can be chosen to have one element.
We call such an object a compact generator of C.

Proposition 4.42. Let R be a commutative ring. Then D(R) is compactly generated by a single
object.

Proof: We know that D(R) is presentable. We claim that the complex consisting only of R
concentrated in degree zero is a compact generator of D(R). Compactness is clear as R is a
projective R-module. Note that, for any X € D(R), we have that

mo(mappg)(X"R, X) = Hompomr) (X'R, X) = H,(X).
If H,(X)is O for all n € Z, we get that X ~ 0. O

Construction 4.43. Consider the 1-category Ch(R) of complexes of R-modules. Let P be a
bounded below complex of projective modules. Then the functor

—®g P: Ch(R) — Ch(R)
is exact and thus preserves quasi-isomorphisms. Furthermore, it has a right adjoint
Hom(P,-): Ch(R) — Ch(R)
and this induces an adjunction on derived categories
- ®g P: D(R) = D(R) :Hom(P, -).

Proposition 4.44. Let X = Spec(R) be an affine scheme and let j: U — X be a quasi-
compact open subscheme. Then D(X)y is compactly generated by a single perfect complex.

Proof: Since U is quasi-compact, there are fi, ..., f, € R such that
X = Spec(Ry)U...USpec(R,),

where we write R; = R[ch]- Consider for all 1 < i < n the cofiber of the map

RiR,

regarded as a map of chain complexes concentrated in degree zero. Then cofib(- f;) is a finite
colimit of compact objects and thus itself compact. Therefore it is equivalent to a bounded
complex of finitely generated projective R-modules, say K;. Now we set

K=K, ®r...0 K,

and claim that this is a compact generator. First of all, we observe that K is in fact in D(X),
since j (Klspec(r) = K ®r R[%] is zero for all i, because K; ® R; ~ 0. Now let ¥ € D(X)y
such that .

mo(mappx,(Z"K, F)) = 0
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for all n € Z. We want to conclude that ¥ =~ 0. By the above discussion, we see that
0 = mo(mappx)(X"K, F)) = mo(mappy, (X" K1, Hom(K; @k . .. ®& Ky, F))).
But, by construction of K, this implies that the map
fi: Hy,(Hom(K> ®g ... ®& K,,, F)) = H,(Hom(K> ® ... ®& K, F))
is an isomorphism for all n € Z. This shows that the canonical morphism
H,(Hom(K> ®¢ ... ®r Ky, F)) = H,(Hom(K; ® ... ® Ky, 7)) ®r Ry
is an isomorphism and, since R; is a flat R-module, we get that the canonical morphism
Hom(K; ® . .. ® Ky, F) — Hom(K; ®g . .. & Ky, F) ® Ry (1)

is a quasi-isomorphism. By assumption, we have that j*(¥) =~ 0, which in particular implies
that ¥ ®g R; ~ 0. Now, since K, ® ... ®g K, is a bounded complex of projective modules,
we get an isomorphism

Hom(K> ®g ... ®r K, 7) ®r R = Hom(K, ®& ... ®g K,,, F ® R;) = 0. )
Finally, combining (I)) and (Z), we get
Hom(K, ®& ... ®g K,,F) = 0.
After applying mapp g, (R, —), it follows that
mapy x,(Kz, Hom(K3 ®k . .. ® Ky, F)) = 0.

We can repeat the above argument until we get that mapy, (K, ¥) =~ 0, which then implies
that

F=2=F kR, =0,
as desired. O
We will now generalize this to non-affine schemes:

Theorem 4.45. Let X be a quasi-compact and quasi-separated scheme and let j: U — X be
a quasi-compact open immersion. Then the sequence

DXy - DX) L D)

is exact, all three categories are compactly generated and both functors preserve compact
objects.
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Proof: Let us start with the affine case X = Spec (A). It is clear that the above sequence is
exact. By Proposition [#.44] we know that D(X) and D(X)y are compactly generated. Since j*
has a fully faithful right adjoint, it follows that D(U) is compactly generated as well. Further-
more, the morphism j* preserves compact objects by Proposition [#.32] Now we observe that
the right adjoint of the inclusion i is given by

G: DX) - D(X)y
F e fib(p: F — jjF)

and, since both j, and j* preserve colimits, it follows that G preserves colimits as well. Thus i
preserves compact objects, which completes the proof in the affine case.

We now turn towards the general case. Using the same arguments as above, the only thing
left to show is that D(X)y is compactly generated (note that we may pick U = 0). We will
inductively show that D(X)y is generated by a single object. By the usual induction argument,
we may assume that we can write X = V U W where V = Spec (R) is affine and the statement
of the theorem holds for W. The situation may be depicted in the following diagram:

I

D(X)y > DW)yaw
- o
D(V)unv - > DV N W)yavaw
D(X) > D(W)
D(V) > D(VNW)
D(U) > DU NW))
DNV s DU NV AW

where all horizontal squares are pullback squares. Let us by ker 7* denote the full subcategory
of D(V)yny spanned by all objects that become 0 after applying 7*. We observe that, by
Zariski descent, we have ker 7 = D(V)wnvyuwnw) and thus ker 7* is compactly generated by
a single element. Now let us consider the sequence

ker ' < D(V)yny — DV 0 Wyayw. (1)

It is easy to see that this is in fact an exact sequence of presentable stable co-categories. By
Theorem[4.30] it follows that the right adjoint of

D(V) = D(VNnW)
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restricts to a right adjoint of 7*. In particular, the right adjoint of n* preserves all colim-
its and thus 7" preserves compact objects. Like in the affine case, it follows that the inclu-
sion ker m* — D(V)yny preserves compact objects as well. So we have shown that we may

apply Corollary 3.26|to the sequence (T).
We will now construct a compact generator of D(X)y: Recall that the square

D(X)y —E— D(W)yaw

b

D(V)yoy —— DV 0 Wavew
is a pullback square. Now let y be a compact generator of ker 7*. Then the tuple
7,07y = 0)

gives rise to an element in D(X)y, which we will denote by Q. Let Ky € D(W)ynw be a
compact generator and observe that y*(Kw) € D(VNW)ynyaw is again compact. But we have
seen above that we may apply Corollary [3.26] to the sequence (I)) in order to conclude that
there is some ay € D(V)yny, as well as an equivalence

B: 7 (av) = ¢ (Kw) ® Ty (Ky).
Thus the tuple
(a’v, KW D ZKw,ﬁ)

gives rise to an element 0, in D(X),. We now define Q = Q; ® O, and claim that this is a
compact generator of D(X)y. It is clear that Q is compact, so let us pick F € D(X)y such that

mapp ), "0, F)=~0
for all n € Z. In particular, it follows that
mappy,),,., "y, Fly) = 0 )

for all n € Z. Consider the unit map n: |y — m.1* F|y and let M denote the cofiber. Note
that M € ker n*. Furthermore, the equivalence (2 implies that

mappy,,,., (E'y, M) = 0,

thus M =~ 0 and therefore |y, =~ m.7* Fly ~ m." Fly. So it suffices to see that 7|y ~ 0.
But, by assumption,

0= mapD(W)an (ZnKW ® EHHKW’ 77|W)’

which implies that 7|y =~ 0, as Ky is a compact generator. This completes the proof. O
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Corollary 4.46. The induced exact sequence
Perf(X)y — Perf(X) — Perf(U)

is an exact sequence of small idempotent complete stable co-categories. Thus the induced
sequence

KX)y — KX) — K{U)
is a cofiber sequence.
Proof: By Theorem we may apply Proposition The second part of the claim is

then clear since non-connective K-theory is localizing. O

4.3. Nisnevich Descent for Algebraic K-Theory
In order to finally conclude that K-theory is a Nisnevich sheaf, we need one more input:

Theorem 4.47. Let S be a quasi-compact and quasi-separated scheme and let

UxxV ——V

Lb

U— s x

be an elementary distinguished Nisnevich square in Smys. Then the restriction of p* induces
an equivalence of co-categories

D(X)y = D(V)ysyv

and thus, in particular, an equivalence Perf(X)y 5 Perf(V)yx,v.

Proof: Observe that, by flat base change, the right adjoint p.: D(V) — D(X) restricts to a
functor

D(V)uxcv = D(X)y.
Therefore it suffices to see that the unit and counit map
n:F - p.pF and e p'p.G—G

are invertible, for ¥ € D(X)y and G € D(V)yy,v. Let us start by showing that the unit map is
invertible:

For this, we observe that, by Zariski descent and flat base change, we may assume that X =
Spec (A) is affine. Since D(X)y is compactly generated by Perf(X)y and since all objects
in Perf(X)y are bounded, we can write ¥ as a colimit of bounded complexes. As the func-
tors p. and p* both preserve colimits, we may thus assume that # is bounded. Since p.. and p*
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commute with shifts, we may assume that there is an n € N such that H;(¥) = 0 foralli < 0
and i > n. Now, for all k < n, there is a canonical fiber sequence

H(F)k] = 7a4F = 19 F.

Thus we may use induction to reduce to the case where & = M[0] for some A-module M.
Furthermore, we can write M as the union of its finitely generated submodules to assume that
it is finitely generated. Let us now pick fi, ..., f, € A such that

U = Spec(A;)U...USpec(A,),
where A; = A[f[.‘l]. Let us write I = (fi,..., f1), Z = Spec (R/I) and
i: Spec(R/I) — Spec(R)

for the corresponding closed immersion. The assumption that M|, = 0 now precisely says
that M ®4 Al fi‘l] = O for all i. Since M is finitely generated, we may thus find an N € N such
that INM = 0. Now, for all 1 < k < N, there is an exact sequence

0 I"M > I"'M - I'M/I"'M — 0

and we may use induction to the reduce to the case where /M = 0. In other words, we may
assume that there is some R/I-module M’ such that M = i.M’. For the rest of the proof, let us
use notation as in the following diagram:

UXXVHV%VXXZ

Lok

U— >3 X¢+—7Z

l

Here, the left square is a Nisnevich square by assumption, and therefore p’ is an isomorphism.
Now, using flat base change, we compute:

M=~iM ~ip.p"M ~pip*M ~p.pi.M ~ p.p"M.

It is easy to see that this equivalence agrees with the unit map.

It remains to show that the counit map is an equivalence. For this, we observe that we can
use exactly the same methods as above to show that, for an affine open j: Spec (A) — V and
any ¥ € D(A) with |y, vynspeca) = 0, the counit map

J P pejF = F

is an equivalence. Since we can cover X by finitely many affine opens, we can then proceed
by induction over the size of the cover and Zariski descent, as usual. This completes the
proof. O

Theorem 4.48. Let S be a quasi-compact and quasi-separated scheme. Then the presheaf
K (—)Z Sm /s — S

is a Nisnevich sheaf.
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Proof: By Theorem it suffices to see that, for any elementary distinguished Nisnevich
square

U Xx V—YV
Lo b
U—_—>x
the induced square of K-theory spaces is a pullback square. Let us consider the induced cube
KX)u > K(V)usyv
K(X) \‘L > K(V)
* \ > * \
K(U) > K(U xx V)

By Corollary 4.46] the left and right side are pushout squares. The map K(X)y — K(V)yx,v
in the back is induced by the equivalence Perf(X)y — Perf(V)yx,v from Theorem and
is thus an equivalence. It follows that the back square is a pushout square as well. Therefore
the front square is a pushout square, too and thus also a pullback square, as Sp is stable.
Since Q% : Sp — S preserves finite limits, the claim follows. O

5. Al-Invariance of Algebraic K-Theory

In order to conclude that algebraic K-theory is represented by a motivic space, we would like
to see that the functor K: Sm/s — S is Al invariant. However, in general this is not true
(see Example [5.T8). In this section we will introduce the G-Theory of a noetherian scheme X
and see that it agrees with K-theory if X is regular (Corollary [5.14). Then Quillen’s classical
result (Theorem about the Al-invariance of G-theory implies that algebraic K-theory
is Al-invariant for regular and noetherian schemes.

Definition 5.1. Let R be a noetherian ring. We call a complex ¥ € D(R) coherent if it
is homologically bounded and if H;(¥) is a finitely generated R-module for all i. We will
write Do (R) for the full subcategory of D(R) spanned by the coherent objects.

Remark 5.2. Note that the inclusion D.,,(R) < D(R) preserves cofibers and shifts and
thus D¢on(R) is stable. Also note that Dop(R) is essentially small. Furthermore, retracts of
finitely generated modules are still finitely generated and thus Do, (R) is idempotent complete
as well.

We will now globalize this definition to noetherian schemes:

Definition 5.3. Let X be a noetherian scheme. We will call an object ¥ € D(X) coherent if,
for any affine open j: Spec(A) — X, the restriction j*F is coherent in D(A). We will write
D1 (X) for the full subcategory spanned by the coherent objects.
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Remark 5.4. Note that, for an open immersion of affine schemes f: Spec(4) < Spec (R),
the functor f*: D(R) — D(A) preserves coherent objects. Thus, for an affine scheme X =
Spec (R), the two definitions of D, (X) above agree.

Remark 5.5. Note that, if j: U < X is an open immersion, then the functor j*: D(X) —
D(U) restricts to a functor Deop(X) — Deon(U) by definition.

5.6. Recall that the small Zariski site Xz, is given by restricting the big Zariski site Sch,x to
the full subcategory spanned by the open subschemes of X.

Proposition 5.7. The functor D¢ : X;ﬂ . — Cat is a sheaf with respect to the Zariski topol-
0gYy.

Proof: Since the subcategory of affine open subschemes defines a basis for the topology
on Xz, it suffices to see that, for any affine open Spec(A) and for any two open immer-
sions ji: Spec(By) — Spec(A) and j,: Spec(B;) — Spec (A) with Spec (A) = Spec (By) U
Spec (B3), the induced square

Deoh(4) ——— Deon(Ba)

I !

Deon(B1) — Dcon(B1 ®4 B2)

is a pullback square. In light of Proposition[4.13] this boils down to showing that an object ¥ €
D(A) is coherent if and only if j{F and j;¥ are coherent. But this follows since being zero
and being finitely generated are both local properties (see [Sta20l Tag 00EO]). O

Remark 5.8. It follows that the functor Dy, : X;g . — Cat is the right Kan-extension of its

restriction to the full subcategory spanned by all affine open subschemes X;grOP. Since the
inclusion

Cat?™ — Cat,,

preserves limits by Remark and [Lurl2| Theorem 1.1.4.4.], it follows from Remark [5.2]
that D¢on(X) is a small idempotent complete stable co-category.

Definition 5.9. We define the G-theory space G(X) of X to be the K-theory space associated
to the stable co-category Do (X).

5.10. Note that, for a flat morphism f: X — Y, the induced functor
7 DY) - DX)
restricts to a functor
Deon(f): Deon(Y) = Deon(X)
and thus we get an induced morphism

G(f): G(Y) - G(X).
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5.11. By definition there is a fully faithful natural inclusion functor
Perf(X) < Don(X). (1)
inducing a natural map
K(X) - G(X).

However (T)), is in general not an equivalence: Consider for example X = Spec (Z/4Z) and
the coherent object Z/27Z[0] in Don(Z/4Z) given by the module Z/2Z concentrated in degree
zero. Since the projective dimension of Z/2Z over Z/4Z is infinite, the module Z/27Z does not
admit a finite projective resolution. In other words, the object Z/2Z[0] is not equivalent to an
object in Perf(X).

The problem is precisely that X = Spec (Z/4Z) is not regular, which (in the noetherian
case) implies the existence of finitely generated modules that do not admit a finite projective
resolution. We will now show that this is the only issue that can appear, i.e. that the above
functor is an equivalence if X is regular.

5.12. Recall that a noetherian local ring (R, m, «) of finite Krull dimension is called regular if
the Krull dimension of R agrees with dim,(m/m?). By a famous theorem of Serre, a noetherian
local ring R is regular if and only if it has finite global dimension, i.e. there is a natural
number n such that every R-module M has a projective resolution of length 7.

A general noetherian ring is called regular if, for every prime ideal p C A, the localization A,,
is a regular local ring. Similarly, a noetherian scheme X is called regular if Oy, is regular for
all x e X.

Proposition 5.13. Let X be a regular noetherian scheme. Then the inclusion
Perf(X) — D¢on(X)
is an equivalence

Proof: Since both Perf(—) and D..,(—) are Zariski sheaves, we may immediately reduce
to X = Spec(R) for some regular ring R. We show that any finitely generated R-module
has a finite resolution by finitely generated projective R-modules and after that, the proposi-
tion follows from an easy homological algebra argument. So let M be a finitely generated
projective R-module. Since R is noetherian, we may find a projective resolution

.o P,—> ... P> Py>» M,

where all P; are finitely generated. Let x € Spec (R) be a point and let i = dim(Ox,,). Then,
by Serre’s theorem, the global dimension of Oy is i and thus ker(P; — P;_;) ® Ox is a
finitely generated projective and hence finite free Ox -module for all j > i. Therefore there
is an affine open neighbourhood U C X of x such that ker(P; — P;_ 1)|U is finite free for all
J = i. As R is noetherian and thus in particular quasi-compact, it follows that there is some
N > 0 such that ker(Py — Py-1) is locally free and thus

...0 - ker(Py > Py_1)) > Py—> ... Ph»M

is the desired finite projective resolution. O
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As a consequence we obtain:

Corollary 5.14. Let X be a regular noetherian scheme. Then the canonical map
K(X) - G(X)
is an equivalence.

A fundamental theorem of Quillen in [Qui73, §7 Proposition 4.1] says that G-theory is A'-
invariant:

Theorem 5.15. Let X be a noetherian scheme. Then the canonical map X x A' — X induces
an equivalence

G(X) —» G(X x A).
If X is regular, it follows that the induced map

KX) » KX x AD
is an equivalence.

Combining this with Theorem 4.48] we finally reach the following result:

Theorem 5.16. Let X be a regular noetherian scheme. Then the algebraic K-theory functor
K: Smyxy —» S
is a motivic space.

5.17. Of course, the proof of Theorem in [[Qui73] uses a construction of the alge-
braic K-theory of a scheme which is different from ours. In order to justify our use of this
theorem, we will now quickly discuss why our definition of algebraic K-theory agrees with
the definition used in [Qui73]].

First of all, it is already noted in [TTO7, Proposition 3.10] that Quillen’s definition of the
algebraic K-theory of a noetherian scheme agrees with the definition given by Thomason and
Trobaugh. Thus it suffices to compare our definition of algebraic K-theory with the definition
given in [TTO7]. But under the light of Remark this follows from [BGT13}, Theorem
7.8].

Example 5.18. We conclude this chapter by giving an example that shows that Theorem[5.16|
fails if X is not regular. For this, let k be a field and let us consider the affine scheme X =
Spec (k[X] / (Xz)) = Spec (k[]). We will show that the canonical morphism

K (k[e][T]) — K, (k[e])

induced by the ring homomorphism k[€][T] — k[e] sending T to O is not an isomorphism. For
this, we recall that, for a ring R, the first K-group K;(R) can be computed as the abelianization
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of the general linear group GL(R). Since k[g] is a local ring, it follows that the canonical
morphism

K, (k[&]) — k[e]*

given by the determinant is an isomorphism (see [Weil3, Lemma III.1.4]). Furthermore, we
have a commutative diagram

k[ellTT* = GLi(k[£][T1)

[

Ki(K[el[T]) ——— Ki(kle]) = kle]*

where the left vertical arrow is injective (it has a left inverse given by the determinant). But
the horizontal arrow cannot be injective, as the map

k[el[TT* — kle]*

is not injective. For example, the unit 1 — €7 is sent to 1.
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Appendix

A. Sheaf Theory

In this section we will recall basic notions of sheaf theory that we are using throughout this
thesis.

Definition A.1.
i) LetC be a 1-category. For ¢ € C, a sieve on c is given by a subobject of the presheaf h(c).

ii) Let ¢ € C and let R be a sieve on c. Let f: d — ¢ be a morphism. Then the pullback
sieve R is the subobject of h(d) given by the assignment:

k— {a: k — dsuchthat f oaisinR}.
Definition A.2. Let C be a 1-category. A Grothendieck-topology T on C is given by a collec-
tion of sieves 7, on every ¢ € C, so called covering sieves, that satisfy the following:
— For every ¢ € C, the maximal sieve id. : h(c) — h(c) is a covering sieve.

— For every ¢ € C, every covering sieve R on c and every morphism f: d — c, the pullback
sieve f*R is a covering sieve on d.

— Let Rbe a sieve on ¢ € C and let S be a covering sieve on c. If, forall f:d - cin S,
the sieve f*R is covering d, then R is itself covering.

A pair (C, 7) consisting of a 1-category C and a topology 7 on C, will be called a site.
Usually, Grothendieck-topologies arise via so called Grothendieck-pretopologies:

Definition A.3. Let C be a 1-category with pullbacks. Then a pretopology T on C assigns to
each object ¢ € C a collection 7, of families of morphisms {x; — c}, called covering families
that satisfy the following conditions:

14

— Every familiy consisting of a single isomorphism a: x — c is covering c.

- IfS = {x;, = ¢} is covering c and if g: d — c¢ is any morphism, then the family
g"S = {x; X, d — d} of the pulled back morphisms is covering d.

— If § = {x; — ¢} is any family and {y; — c} is a covering familiy such that for all j the
family {x; X, y; — y,} is covering y;, then § is itself a covering family.

The following is an easy excercise:

Construction A.4. Let C be a 1-category equipped with a pretopology 7’. Then we define a
topology 7 on C by declaring that a sieve R on c is covering if and only if it contains a family
of morphisms that is an element of 7... It is easy to check that this indeed defines a topology
on C.
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Construction A.5. Let (C, 1) be a site. Consider the collection W consisting of all morphisms
of the form R — h(c) with R € 7.. We define the category of t-sheaves of spaces on C,
denoted by Sh(C), to be the full subcategory spanned by the W-local objects of Psh(C) (see
[Lur09, §5.5.4]). In particular, we have a localization functor Li¢r : Psh(C) — Sh-(C) which
is left adjoint to the inclusion i: Sh.(C) — Psh(C). We will call a morphism a: ¥ — G a
T-local equivalence, if L r)(@) is an equivalence.

The main result is the following ([Lur09, Proposition 6.2.2.7]:

Theorem A.6. In the above situation, the functor Lcry: Psh(C) — Sh.(C) preserves finite
limits. In particular, the category Sh.(C) is an co-topos.

There is also a notion weaker than the one of a pretopology, which can be used to construct
categories of sheaves:

Definition A.7. Let C be a 1-category with pullbacks. Then a coverage o on C assigns to
each object ¢ € C a collection o, of families of morphisms {x; — c}, called covering families,
that satisfy the following condition:

If {x; — ¢} is covering c and g: d — c is any morphism, then the family {x; X, d — d} of
the pulled back morphisms is covering d.

Definition A.8. Let C be a 1-category with pullbacks.

— Let S = {fi: x; = c} be a family of morphisms. The sieve generated by S is the sieve
given by the assignment:

x > {f: x = csuch that f factors through one of the f;}.

— Let o be a coverage on C. We say that a presheaf & € Psh(C) is a Cech-sheaf for o if,
forallc e Cand S = {x; — c} in o, the canonical morphism

F () = mappy, (R, F)
is an equivalence, where R denotes the sieve generated by the family S.

Construction A.9. Let C be a 1-category with finite limits and let f: ¢ — d be a morphism
in C. The Cech-nerve of f is the simplicial object C,(f) given by the (k + 1)-fold fiber product
of c over d with itself

C'.(f)=(...cxdc><dc§cxdc:§c),

where the face maps are the projections and the degeneracies are the canonical maps induced
by the universal property of the fiber product. Furthermore, this simplicial object comes with
a canonical augmentation Cd( f)—d.

Now, let {f;: x; — ¢} be a family of morphisms in C and let us by R denote the sieve
generated by this family. We get an induced map

i | [t - e
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in Fun(C, Set) € Psh(C) and thus a simplicial object Cu( f) in Fun(C, Set), which we may also
consider as a simplicial object in Psh(C). Furthermore, the augmentation factors through the
subobject R and we get an induced morphism

¢r: ICU(H = R
in Psh(C).
Lemma A.10. In the situation of Construction @l the morphism ¢y is an equivalence.

Proof: By [Lur09, Proposition 6.2.3.4], both IC.(f)| and R are subobjects of the O-truncated
object h(d) and therefore O-truncated themselves. So it suffices to show that the O-truncation
T<0(¢y) is an equivalence. Since 7<o commutes with colimits, it suffices to show that the
canonical morphism

colimC.(f) = R
A°P

is an isomorphism, where the colimit is the 1-colimit taken in the 1-category Fun(C, Set). Let J
be the “reflexive coequalizer-category”, i.e. the full subcategory of A°P spanned by the two
objects [0] and [1]. Then the canonical inclusion J — AP is a colimit-cofinal 1-functor and it
follows that colimpe C,(f) is given by the reflexive coequalizer of the diagram

( ]_I h(Xi)) X () ( ]_[ h(x,-)) = U h(x;).

Now, one can easily and explicitly check that the canonical map from this coequalizer to R is
an isomorphism. O

Remark A.11. For two Grothendieck-topologies 7 and 7’ on a 1-category C, we define the
intersection 7 N 7’ by forming the intersection 7. N 7. for every ¢ € C. This clearly is a
Grothendieck-topology again. So we may speak of the smallest Grothendieck-topology con-
taining a certain collection of sieves.

Definition A.12. Let C be a 1-category with pullbacks and o a coverage on C. Then we
define the Grothendieck-topology generated by o to be the smallest Grothendieck-topology
containing, for all ¢ € C, all sieves generated by families {x; — c} that lie in o.. We denote
this topology by o.

We will now relate the two notions of sheaves introduced above:

Proposition A.13. Let C be a 1-category with finite limits and let o be a coverage on C. Then
a presheaf 7 € Psh(C) is a Cech-sheaf with respect to o if and only if it is a sheaf with respect
to O.

Proof: 1t is clear that every o-sheaf is a o-Cech-sheaf. For the converse, let us consider the
assignment ¥ that assigns to every ¢ € C the collection ¥, of all sieves R < h(c) such that
the following holds: For every f: x — ¢ and every o-Cech-sheaf E, the canonical morphism

E(x) = mappg,c) (R Xp(e) h(x), E)
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is an equivalence. If we can show that ¥ is a topology on C, we are done: In this case, the
topology ¥ clearly contains the coverage o~ and therefore also @. So, if ¥ is Cech-sheaf, it is
a W-sheaf by construction and thus a o-sheaf and the Proposition follows.

Therefore, we only have to check that ¥ satisfies the three axioms of Definition @} The
first two are obviously satisfied. For the third, let ¢ € C and let R — h(c) be any sieve.
Let S < h(c) be a sieve in ¥, such that, for every x — c in §, the pulled back sieve

R Xh(c) h(x) d h(x)

is in .. Let E be any o-Cech-sheaf. We have to show that, for any f: y — c¢, the canonical
map

E(y) = mappg,c) (R Xne) h(y), E)

is an equivalence. Consider the commutative diagram

E(y) > Mappg,c) (R Xu(e) M(y), E)

l l

mappg,c) (S Xn(e) 1Y), E) ——> mappg,c) (R Xnie) S Xney M), E)

We know that the left vertical map is an equivalence, as S is in .. Writing R as a colimit of
representables, we get that the right vertical map is an equivalence as well. So it suffices to
see that the the lower horizontal morphism is an equivalence. Now, we use that

S =~ colim h(k) ~ colim h(k).
h(k)—S k—cin S
So we get a commutative diagram

mappg, ) (S Xnee) M), E) ——————> mappg,c) (R Xne) S Xne) M), E)

l !

lim mappg,c) (k) Xpe) H(Y), E) —> k_l)iﬂ s MaPpsh(c) (R Xne) h(k) Xn(e) h(y), E)

k—cin§

where the vertical arrows are equivalences, by the universality of colimits in Psh(C). So it
suffices to see that the bottom horizontal arrow is an equivalence. But, for every k — xin S,
the sieve

R Xy h(k) — h(k)
is in ¥y and thus it follows that the morphism
E(k X, y) = mappgc) (k) Xpee) h(y), E) = mappgy ) (R Xpey h(k) Xncey h(y), E)

is an equivalence. This completes the proof. O
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Remark A.14. Let C be a category and let T be a topology on C. Then the results above
provide a way of determining whether a presheaf 7 on C is a 7-sheaf, which is often useful in
practice. Namely, if one can find a coverage o that generates the topology 7, Proposition[A.T3)|
and Lemma show that if suffices to see that, for any family {f;: x;, — ¢} in o, the
canonical morphism

F(x) - lim(?(x) - HT(XI‘) = 1—17:(361‘ Xe X)) E’i )
i i

is an equivalence in Psh(Sm/s). We use this kind of strategy for example in the proof of
Theorem [[.13]

We will now study morphisms of sites:

Definition A.15. Let (C,7) and (D, 7’) be sites with finite limits. A functor y: C — D is
called a morphism of sites, if

i) the functor y preserves finite limits and

ii) for every ¢ € C and any family {x; — ¢} generating a T-covering sieve on c, the fam-
ily {y(x;) = y(c)} generates a 7’-covering sieve on y(c).

Let us recall the following definition:

Definition A.16. Let X and Y be oco-topoi. A geometric morphism from X to Y is given by a
functor f,: X — Y that has a left exact left adjoint f*: Y — X.

Proposition A.17. Lety: (C,1) = (D, 1’") be a morphism of sites. Then the functor
¢”: Psh(D) — Psh(C),

given by precomposition with vy, restricts to a morphism
g+ Shy (D) — Sh-(O),

which has a left adjoint g* that preserves finite limits. So g. is a geometric morphism of
00-1OpOi.

Proof: First we will show that ¢” restricts to a functor on categories of sheaves. Note that ¢”
has a left adjoint y,: Psh(C) — Psh(D) given by left Kan-extension. More explicitly, the

adjoint vy, is the functor that is uniquely characterized by the fact that it preserves colimits and
makes the diagram

Psh(C) —— Psh(D)

c——D
commute. Now let 7 € Sh/ (D) and let {x; — c} be a family generating a T-covering sieve on
¢ € C. Consider the induced morphism

£i | [t - hee
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in Psh(C). By Lemma|[A.10] we would like to show that the induced morphism

J(F)e) — mapPsh(C)(|éo(f)|’ (F))

is an equivalence. By adjunction, this is equivalent to showing that the induced morphism

F(7(€)) = mappgy ) (11ICa()] F) (0

is an equivalence. But as y, commutes with all colimits and agrees with y when restricted to
C and so in particular preserves pullbacks when restricted to C, it follows that y,|C,(f)| can be
identified with the Cech nerve of the morphism

y(H: | [ rorx) - hove)

induced by the family {y(x;) — 7y(c)}. As vy is a morphism of sites, this family generates
a 7’/-covering sieve. Therefore, the morphism (I)) is an equivalence as ¥ is a 7’-sheaf. So we
have shown that ¢”(F) is indeed a 7-sheaf and thus ¢” restricts to a functor g. of subcategories
of sheaves, as claimed. Now we observe that g, has a left adjoint g*, given by the composite

. Lipr
g1 Sh.(C) = Psh(C) 2 Psh(D) — Sh,.(D).

It remains to show that g* preserves finite limits. But this follows since the first functor above
preserves all limits and Ly -y © ) preserves finite limits by [Lur09, Proposition 6.1.5.2]. O

Remark A.18. The above argument shows in particular that y,: Psh(C) — Psh(D) takes
T-covering sieves to 7’-covering sieves. It follows that y, takes T-local equivalences to 7’-local
equivalences.

Example A.19. Let (C, 7) be a site with finite limits and let ¢ € C be an object. Let C/. be the
slice over c and let F': C;. — C denote the forgetful functor. We equip C,, with a topology 7/
by defining a family {x; — u} of morphisms in C/. to generate a covering sieve if and only
if the family {F(x;) — F(u)} generates a covering sieve. It is easy to check that this indeed
defines a topology on C. We have an adjunction

F:Ce=C:—Xc

and since covering families are stable under pullback, the functor — X ¢ preserves covering
families. Thus — X ¢ is in fact a morphism of sites. So by Lemma[A.T7] we get an adjunction

g*: ShT(C) == ShT'(C/c) “8xs

where g* preserves finite limits. But we also get an induced adjunction on the level of presheaf
categories

¢f: Psh(C) == Psh(C.) :¢7*¢

and it follows that ¢’ =~ (= x ¢),. Since F preserves pullbacks and covering families, the same
argument as above shows that the further left adjoint F, of ¢/’ preserves local equivalences.
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Therefore, the adjoint ¢/’ takes 7-sheaves on C to 7’-sheaves on C/,. It follows that g* is given
by the restriction of ¢/ and that it has a left adjoint itself, given by the composite

Ly

F
Sh,(C/¢) = Psh(C,.) — Psh(C) — Sh.(C).
We will usually denote this left adjoint by g,.

We will now quickly speak about hyperdescent. For this, we will start with recalling the
notion of a hypercover:

Definition A.20.

i) Let n € N. We will write A*" C A for the full subcategory on the objects [0],..., [n].
For C a presentable co-category, restriction along the inclusion i: A*" — A, denoted by

i*: Fun(A°?,C) — Fun((A¥")*?, C),

has a right adjoint i. given by right Kan-extension. We will denote the composite i, o i*
by cosk,.

ii) Let X be an co-topos. A simplicial object U,: A — X is called a hypercovering if the
unit map induces an effective epimorphism

U, — cosk,_1(U,),
for all n € N.

Remark A.21. Let f: X — 1x be an effective epimorphism, where 1y is the terminal object
of X. Then the underlying groupoid of the Cech nerve (see [Lur09, Proposition 6.1.2.111) of f

C(f)e: A® - X

is the right Kan-extension of its restriction to (AS°)°P. It follows that C(f), is a hypercovering.

A.22. Let X be an co-topos. We recall that a morphism f: X — Y in X is called co-connective
if m(f) = Ofor all k € N (see [Lur09} §6.5.1]). An object X € X is called hypercomplete if and
only if it is local with respect to co-connective morphisms. Furthermore, the full subcategory
of hypercomplete objects, which we will denote by

X" C KX,

is an accessible localization of the co-topos X by [Lur09, Proposition 6.5.2.8]. Moreover,
since co-connective morphisms are stable under pullback, it follows from [Lur(9, Proposition
6.2.1.1] that the localization functor L: X — X" preserves finite limits. Thus X” itself is
an oo-topos and is called the hypercompletion of X. See [Lur(9, §6.5.2] for more details on
the hypercompletion.

The relation between hypercompleteness and hypercoverings is the following:
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Theorem A.23 ([Lur(09, Corollary 6.5.3.13]). Let X be an co-topos. For every X € X and ev-
ery hypercovering U, in the co-topos X x, consider the canonical morphism c(U,): |U,| — X.
Let S be the collection of all such morphisms. Then an object Y € X is hypercomplete if and
only if it is S -local.

A.24. Now let (C, 1) be a site. Informally speaking, the above theorem says that the co-topos
Sh-(C)" can be identified with the full subcategory of Psh(Smys) of presheaves F that satisfy
descent with respect to all covering families in 7 and for all hypercoverings generated by 7.
For that reason, we will refer to objects in Shyis(Smys ) as hypersheaves.
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