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Abstract

We study a condensed version of the étale homotopy type of a scheme, which refines both
the usual étale homotopy type of Friedlander–Artin–Mazur and the proétale fundamental
group of Bhatt–Scholze. In the first part of this paper, we prove that this condensed homo-
topy type of schemes satisfies descent along integral morphisms and that the expected fiber
sequences hold. We also provide explicit computations, for example for rings of continuous
functions.

In the second part, we study the fundamental group of the condensed homotopy type in
more detail. We show that, unexpectedly, the fundamental group of the condensed homotopy
type of the affine line over the complex numbers,𝐀1

𝐂, is nontrivial. However, we prove that the
Noohi completion of the condensed fundamental group recovers the proétale fundamental
group of Bhatt–Scholze. We also investigate a milder completion, the quasi-separated quotient
of the condensed fundamental group. We show that this quotient already yields the expected
answers and is, in some respects, even better behaved than the proétale fundamental group.

A key ingredient in many of our arguments is a description of the condensed homotopy
type using the Galois category of a scheme, as introduced by Barwick–Glasman–Haine.
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1 Introduction

1.1 Motivation and overview
Let 𝑋 be a locally topologically noetherian scheme. In their work on the proétale topology [10,
§7], Bhatt and Scholze defined a refinement of the étale fundamental group called the proétale
fundamental group πproét1 (𝑋). The profinite completion of πproét1 (𝑋) recovers the usual étale
fundamental group; moreover, the proétale and étale fundamental groups coincide for normal
schemes. While the étale fundamental group classifies local systems with values in profinite
rings such as 𝐙𝓁, it generally does not classify𝐐𝓁-local systems. The proétale fundamental group
has the better feature that it classifies local systems in a more general class of topological rings,
including 𝐐𝓁-local systems.

The étale fundamental group is the fundamental group of the étale homotopy type,1 a proan-
ima introduced by Artin–Mazur [7, §9] and Friedlander [23, §4]. The étale homotopy type classi-
fies derived 𝐙𝓁-local systems, and has a number of interesting applications. For example, Fried-
lander’s [21] and Sullivan’s [74] proofs of the Adams Conjecture, Feng’s proof [20] of Tate’s 1966
conjecture on the Artin–Tate pairing [76], and applications to anabelian geometry [42; 68].

Motivated by the utility of the proétale fundamental group and the étale homotopy type, one
desires a refinement of the Bhatt–Scholze proétale fundamental group to a ‘homotopy type’ that
classifies derived 𝐐𝓁-local systems and refines the key properties of the étale homotopy type.
The main goal of this article is to investigate such a refinement using the theory of condensed
mathematics, introduced by Clausen-Scholze [70].

Condensed refinements of the étale homotopy type have already been defined or suggested in
various places in the literature, by Bhatt-Scholze [10, Remark 4.2.9], Barwick-Glasman-Haine [8,
13.8.10], Hemo-Richarz-Scholbach [40, Appendix A], and Meffle [60]. In [40, Appendix A] and
[8, §13.8] it is shown that the respective homotopy types indeed classify derived𝐐𝑙-local systems.
But beyond a few basic formal properties, little more was known about these refinements. Hence,
the primary aim of this article is to undertake a thorough investigation of them.

The definitions given in [10], [40], and [60] are quite similar and proceed as follows. For a
qcqs scheme 𝑋, pick a proétale hypercover 𝑋∙ → 𝑋 by w-contractible schemes. Then for every
𝑛 ∊ 𝐍, 𝜋0(𝑋𝑛) is a profinite set. Define the condensed homotopy type of 𝑋 to be the colimit

Πcond
∞ (𝑋) = colim

𝚫op
𝜋0(𝑋∙) ∊ Cond(Ani),

computed in the∞-category Cond(Ani) of condensed anima.
This article consists of two parts. In the first part, we show that in many respects the con-

densed homotopy type behaves as one would expect from a refinement of the étale homotopy
type. Among other results, we show that an analogue of the fundamental fiber sequence holds
and that the condensed homotopy type satisfies integral descent; see Theorems 1.1 and 1.2 below.
We also provide explicit computations of the condensed homotopy type, for example for rings of
continuous functions C(𝑇, 𝐂), where 𝑇 is a compact Hausdorff space (see Theorem 1.3).

One of the main new tools that we use in many of our proofs relies on the work of Barwick–
Glasman–Haine [8]. In loc. cit. the authors define a condensed categoryGal(𝑋), called theGalois
category of a scheme. The aforementioned condensed refinement of the étale homotopy type in
[8, 13.8.10] is the classifying space of this condensed category. We prove in Proposition 3.36 that
this definition agrees with the others mentioned above, that is,

Πcond
∞ (𝑋) ≃ BGal(𝑋).

1Here, we really mean the étale fundamental group as defined in SGA3.
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Since Gal(𝑋) can be described somewhat explicitly, this is a useful tool in many proofs and
calculations. For a more detailed account of the results we prove, see §1.2 below.

In the second part of this article, we investigate the condensed fundamental group of 𝑋. Every
geometric point 𝑥̄ → 𝑋 defines a point of the condensed anima Πcond

∞ (𝑋), giving rise to

πcond𝑛 (𝑋, 𝑥̄) ≔ π𝑛(Πcond
∞ (𝑋), 𝑥̄).

Computing these groups is generally difficult, and the results can be wild and unexpected. For
instance, we prove in Corollary 7.4 that the fundamental group of the affine line over the complex
numbers is nontrivial:

πcond1 (𝐀1
𝐂, 𝑥̄) ≠ 1.

While this departs from the classical situation, we show that the Noohi completion of πcond1 (𝑋, 𝑥̄)
recovers the proétale fundamental group of Bhatt–Scholze; see Theorem 8.12. In fact, we prove
that already the quasi-separated quotient πcond,qs1 (𝑋, 𝑥̄), a milder completion of πcond1 (𝑋, 𝑥̄), be-
haves computationally as expected (cf. Theorem 1.7). Studying πcond,qs1 is another major theme
of the second part of this article. It turns out that in some ways this quotient is even better be-
haved than πproét1 (see, e.g., Remark 7.39). Using results from the first part, we establish the van
Kampen and Künneth formulas for πcond,qs1 , allowing complete calculations for varieties over
fields (cf. Theorems 1.9 and 1.10). For a more detailed account of the results we prove, see §1.2
below.

1.2 The condensed homotopy type
We now turn to explaining results that we prove in the first part of this paper in more detail. The
first is a condensed version of the ‘fundamental exact sequence’ for the étale fundamental group.

1.1 Theorem (fundamental fiber sequence, Corollary 5.6). Let𝑓∶ 𝑋 → 𝑆 be amorphismbetween
qcqs schemes, and let 𝑠 → 𝑆 be a geometric point of𝑆. Ifdim(𝑆) = 0, then the naturally null sequence

Πcond
∞ (𝑋𝑠) Πcond

∞ (𝑋) Πcond
∞ (𝑆)

is a fiber sequence in the∞-category Cond(Ani).

The second is descent along hypercovers by integral surjections:

1.2 Theorem (integral hyperdescent, Corollary 6.16). The functor 𝑋 ↦ 𝑋hyp
proét sending a qcqs

scheme 𝑋 to its hypercomplete proétale∞-topos satisfies integral hyperdescent. As a consequence,
if 𝑋∙ ↠ 𝑋 is an integral hypercover, then the natural map of condensed anima

colim
[𝑛]∊𝚫op

Πcond
∞ (𝑋𝑛) → Πcond

∞ (𝑋)

is an equivalence.

The description of the condensed homotopy type as BGal(𝑋) is a crucial ingredient in our
proof of the above theorem. Using this description, Theorem 1.2 follows rather quickly from the
fact that, for an integral morphism of schemes 𝑓∶ 𝑋 → 𝑌, the functor Gal(𝑓) is a right fibration
Proposition 6.9.

For the third, we give a complete computation of the condensed and étale homotopy types
of rings of continuous functions to the complex numbers:
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1.3 Theorem (Corollary 4.33). Let 𝑇 be a compact Hausdorff space and consider the ring C(𝑇, 𝐂)
of continuous functions to the complex numbers. Then there is a natural equivalence of condensed
anima

Πcond
∞ (Spec(C(𝑇, 𝐂))) ≃ 𝑇 .

(Here, the right-hand side denotes the condensed set represented by 𝑇.)
As a consequence, up to protruncation, the étale homotopy type of Spec(C(𝑇, 𝐂)) is equivalent

to the shape of the topological space 𝑇. In particular, if 𝑇 admits a CW structure, then, up to pro-
truncation, the étale homotopy type of Spec(C(𝑇, 𝐂)) recovers the underlying anima of 𝑇.

1.4 Remark. The computation of the protruncated étale homotopy type of rings of continuous
functions seems new. We also do not know of a direct computation that does not pass through
the condensed homotopy type.

1.3 The condensed fundamental group
We now turn to our results about the condensed fundamental group. But first, let us remark that
we also obtain a reasonably explicit description of the condensed set of connected components
of Πcond

∞ (𝑋).

1.5 Theorem (Theorem 4.17 andCorollary 4.19). Let𝑋 be a qcqs scheme. Then, for any extremally
disconnected profinite set 𝑆, we have

πcond0 (𝑋)(𝑆) = Mapqc(𝑆, |𝑋|)∕∼ ,

where ∼ is the equivalence relation generated by pointwise specializations.
In particular, if 𝑋 has finitely many irreducible components, then πcond0 (𝑋) coincides with the

usual profinite set π0(𝑋) of connected components of 𝑋.

1.6 Remark (see Example 4.23). Let 𝑅 be a ring with the property that |Spec(𝑅)| is homeomor-
phic to the underlying spectral space of Huber’s adic unit disk over 𝐐𝑝. Then the condensed set
πcond0 (Spec(𝑅)) coincides with the separated quotient of the space |Spec(𝑅)|. This is a compact
Hausdorff space, and moreover, it coincides with the Berkovich unit disk, i.e.,

πcond0 (Spec(𝑅)) ≃ |𝐃1,Berk
𝐐𝑝

| .

While this example feels rather contrived in the realm of schemes, in a follow-up article we plan
to study a similarly defined condensed homotopy type for rigid spaces.

We now turn to our results about the condensed fundamental group. As stated before, the
condensed group πcond1 (𝐀1

𝐂) is nontrivial. Our first result is that a quotient moremild than Noohi
completion forces πcond1 (𝐀1

𝐂) to become trivial. Specifically, Clausen and Scholze introduced a
localization 𝐴 ↦ 𝐴qs of the category of condensed sets called the quasiseparated quotient [69,
Lecture VI], and we show:

1.7 Theorem (Theorem 7.17). Let 𝑋 be a topologically noetherian scheme that is geometrically
unibranch and let 𝑥̄ → 𝑋 be a geometric point. Then there is a natural isomorphism

πcond,qs1 (𝑋, 𝑥̄) ⥲ πét1 (𝑋, 𝑥̄) .

As a consequence of Theorems 1.1 and 1.5, we deduce a fundamental exact sequence for the
quasiseparated quotient of the condensed fundamental group:
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1.8 Theorem (fundamental exact sequence, Corollary 7.16). Let 𝑘 be a fieldwith separable closure
𝑘̄, let 𝑋 be a qcqs 𝑘-scheme, and fix a geometric point 𝑥̄ → 𝑋𝑘̄ . If 𝑋 is geometrically connected and
𝑋𝑘̄ has finitely many irreducible components, then the sequence

1 πcond,qs1 (𝑋𝑘̄, 𝑥̄) πcond,qs1 (𝑋, 𝑥̄) Gal𝑘 1 .

is exact.

Theorem 1.7 can be used, together with the integral descent (Theorem 1.2), to show that for
many non-normal schemes, the quasiseparated quotient of the condensed fundamental group
still admits a description in terms of the étale fundamental group. Moreover, surprisingly, is a
topological (Hausdorff) group rather than some more complicated condensed group.

1.9 Theorem (vanKampen formula forπcond,qs1 , special case of Theorem 7.35). Let𝑋 be aNagata
qcqs scheme and let 𝑋𝜈 =

∐
𝑖 𝑋

𝜈
𝑖 be its normalization decomposed into connected components.

After choosing base points and étale paths, one has that

πcond,qs1 (𝑋, 𝑥̄) ≃
(
∗top𝑖 πét1 (𝑋

𝜈
𝑖 , 𝑥̄𝑖) ∗

top 𝐙∗𝑟
)
∕𝐻′ ,

where 𝐙∗𝑟 is a free (discrete) group of finite rank, ∗top denotes the free topological product and𝐻′

is an explicit closed normal subgroup.

Using the van Kampen and the Künneth formulas for the étale fundamental group, we prove:

1.10 Theorem (Corollary 7.37). Let 𝑘 be a separably closed field and let 𝑋 and 𝑌 be schemes of
finite type over 𝑘. If 𝑌 is proper or char(𝑘) = 0, then the natural homomorphism of condensed
groups

πcond,qs1 (𝑋 ×𝑘 𝑌, (𝑥̄, 𝑦̄)) → πcond,qs1 (𝑋, 𝑥̄) × πcond,qs1 (𝑌, 𝑦̄)

is an isomorphism.

1.4 Related work
Asmentioned earlier, the first definitions of the condensedhomotopy typewere given byBarwick–
Glasman–Haine via exodromy [8, 13.8.10], by Bhatt–Scholze [10, Remark 4.2.9] and by Hemo–
Richarz–Scholbach [40, Appendix A]. We expand the definitions given there by the perspective
of relative shape and, more importantly, show that all of these are equivalent. Another approach
to the condensed homotopy type that mostly uses (simplicial) topological spaces rather than
condensed mathematics (along the lines of Artin and Mazur’s work) appeared in [60].

Some results and definitions in this article constitute a part of doctoral theses of the forth
[56] and sixth [81] named authors.

1.5 Linear overview
In §2, we recall some preliminaries on condensed anima, pro-objects, condensed∞-categories,
and proétale sheaves. In §3, we recall the various definitions of the condensed homotopy type and
prove that they are all equivalent. We also compute the condensed homotopy type of henselian
local rings (Corollary 3.44). In §4, we describe the connected components of the condensed
homotopy type. Among other things, we show that if 𝑋 is a qcqs scheme with finitely many irre-
ducible components, then πcond0 (𝑋) is simply the profinite set π0(𝑋) of connected components of
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𝑋 (Corollary 4.19). As an application of our explicit description of πcond0 (𝑋), we also we compute
the condensed homotopy type of rings of continuous functions (Theorem 1.3)

In §5, we prove the fundamental fiber sequence Theorem 1.1. We also prove an analogue of
a result of Friedlander relating the condensed homotopy type of the geometric fiber of a smooth
proper morphism to the fiber of the induced map on condensed homotopy types (Theorem 5.12).
In §6, we prove that the condensed homotopy type satisfies integral hyperdescent (Theorem 1.2).

We then turn our attention to the condensed fundamental group. In §7, we study the quasisep-
arated quotient of the condensed fundamental group. We begin by showing that πcond1 (𝐀1

𝐂) ≠ 1.
Then we prove Theorems 1.7 and 1.10, along with the van Kampen theorem and fundamental
exact sequence for the quasiseparated quotient. In §8, we prove that the Noohi completion of
the condensed fundamental group recovers the proétale fundamental group.

We have three appendices. Appendix A, by Bogdan Zavyalov, is on the structure of rings of
continuous functions and the relationship between these rings andČech–Stone compactification.
Weneed these results for the computation of the condensed homotopy type of rings of continuous
functions, however were not able to find any sources that contained all of the results we needed.

It is well-known that there is an abstract isomorphism between the absolute Galois group of
the function field 𝐂(𝑡) and the free profinite group on the set 𝐂. See, for example [19; 38; 46]. It
seems to be folklore that this isomorphism can be chosen to be compatible with decomposition
groups; this is crucial for our proof that πcond1 (𝐀1

𝐂) ≠ 1. Since we could not find this proven in
the literature, and there are some subtleties involved, we have included a proof in Appendix B.
In Appendix C, we prove a version of Quillen’s Theorem B for profinite categories, which is a
crucial ingredient in §5.2.

1.6 Notational conventions
We use the following standard notation.

(1) We write Cat∞ for the large∞-category of small∞-categories, and write Ani ⊂ Cat∞ for
the full subcategory spanned by the anima (also called∞-groupoids or spaces).

(2) Given a small ∞-category 𝒞, we write PSh(𝒞) ≔ Fun(𝒞op,Ani) for the ∞-category of
presheaves of anima on 𝒞.

(3) Given an∞-topos𝒳, we write𝒳hyp ⊂ 𝒳 for the full subcategory spanned by the hypercom-
plete objects. The inclusion is accessible and admits a left exact accessible left adjoint, so
that 𝒳hyp is also an∞-topos, called the hypercompletion of 𝒳.

(4) Given an∞-site (𝒞, 𝜏), wewrite Sh𝜏(𝒞) for the∞-topos of sheaves of anima on𝒞with respect
to 𝜏. We write Shhyp𝜏 (𝒞) ≔ Sh𝜏(𝒞)hyp. The∞-topos Shhyp𝜏 (𝒞) can also be identified as the full
subcategory of Sh𝜏(𝒞) spanned by those sheaves that also satisfy descent for hypercovers. If
the topology 𝜏 is clear from the context, we may omit it from the notation.

(5) Given a scheme 𝑋, we write Ét𝑋 and ProÉt𝑋 for its étale and proétale site, respectively. More-
over, we write 𝑋ét ≔ Sh(Ét𝑋) and 𝑋proét ≔ Sh(ProÉt𝑋) for the∞-topoi of étale and proétale
sheaves of anima on 𝑋, respectively.

(6) For an integer 𝑛 ≥ 0, we write [𝑛] for the poset {0 < … < 𝑛}.

(7) For each integer 𝑛 ≥ 0, we write 𝚫≤𝑛 ⊂ 𝚫 for the full subcategory spanned by [0], [1], . . . ,
[𝑛].

7



1.7 Acknowledgments
First and foremost the authors want to thank Clark Barwick. Many of the results and ideas
in this article were suggested to us/ inspired by Clark and we owe him a huge mathematical
debt. We also want to thank Peter Scholze for suggesting that the quasi-separated quotient of the
condensed fundamental groupwill give the correct answers.Wewant to thank Piotr Achinger for
asking us about the condensed homotopy type of rings of continuous functions. We furthermore
want to thank Denis-Charles Cisinski, Jakob Stix and Remy van Dobben de Bruyn for helpful
discussions.

PH gratefully acknowledges support from the NSF Mathematical Sciences Postdoctoral Re-
search Fellowship under Grant #DMS-2102957. TH,ML andCMgratefully acknowledge support
by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collab-
orative Research Centre TRR 326 Geometry and Arithmetic of Uniformized Structures, project
number 444845124. SW gratefully acknowledges support from the SFB 1085 Higher Invariants
in Regensburg, funded by the DFG. The third author (ML) was later supported by the National
Science Centre, Poland, grant number 2023/51/D/ST1/02294. The last two funding sources have
also funded three research stays for our group: in Frankfurt, Kraków and Sopot. We thank the
Goethe University and IMPAN for hosting us. For the purpose of Open Access, the authors have
applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version
arising from this submission.

2 Preliminaries
For later use, let us record a few definitions and observations on condensed anima (§2.1), pro-
anima and their relation to condensed anima (§2.2), condensed∞-categories (§2.3), shape theory
(§2.4), and proétale sheaves and w-contractible objects (§2.5).

2.1 Recollection on condensed anima
All of the material contained in this subsection is gathered from [9] and [70].

2.1 Notation. We write Top for the category of topological spaces, and Comp ⊂ Top for the
full subcategory spanned by the compact Hausdorff spaces. We write β∶ Top → Comp for
the Čech–Stone compactification functor, i.e., the left adjoint to the inclusion. By Stone duality,
the category Pro(Setfin) of profinite sets embeds fully faithfully into Comp with image the full
subcategory spanned by the totally disconnected compact Hausdorff spaces. We write

Extr ⊂ Pro(Setfin)

for the full subcategory spanned by the extremally disconnected profinite sets. By a theorem of
Gleason [29], the projective objects of the categoryComp are exactly the extremally disconnected
profinite sets. Moreover, a profinite set is extremally disconnected if and only if it is a retract of
the Čech–Stone compactification of a set equipped with the discrete topology.

2.2 Recollection (condensed anima). Give the category Comp of compact Hausdorff spaces
the Grothendieck topology where the covering families are generated by finite jointly surjective
families. For each compactHausdorff space𝑇, let𝑇δ denote the underlying set of𝑇 equippedwith
the discrete topology. By the universal property of Čech–Stone compactification the ‘identity’
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map 𝑇δ → 𝑇 extends to a surjection β(𝑇δ) ↠ 𝑇. In particular, every compact Hausdorff space
admits a surjection from an extremally disconnected profinite set. Hence the subcategories

Extr ⊂ Pro(Setfin) ⊂ Comp

are bases for the topology of finite jointly surjective families. By [3, Corollary A.7], the restriction
functors define equivalences hypercomplete of∞-topoi

(2.3) Shhyp(Comp) ⥲ Shhyp(Pro(Setfin)) ⥲ Shhyp(Extr) .

The∞-topos Cond(Ani) of condensed anima is any of the equivalent∞-topoi (2.3).
Since every surjection 𝑇′ ↠ 𝑇 of profinite sets with 𝑇 extremally disconnected admits a

section, a presheaf 𝐹 on Extr is a hypersheaf if and only if 𝐹 carries finite disjoint unions to
finite products. That is,

Shhyp(Extr) ≃ Fun×(Extrop,Ani) .
From this description it follows that sifted colimits in Cond(Ani) can be computed in the
presheaf category Fun(Extrop,Ani).
2.4 Remark. Since the category Comp of compact Hausdorff spaces is not a small category,
there are some set-theoretic issues in the above discussion. We explain how to deal with these
issues in Remark 2.30.

Given the final description of condensed anima, we make the following convenient general
definition.

2.5 Definition (condensed objects). Let 𝒞 be an∞-category with finite products. The∞-cate-
gory of condensed objects of 𝒞 is the∞-category

Cond(𝒞) ≔ Fun×(Extrop, 𝒞)

of finite product-preserving presheaves Extrop → 𝒞. If 𝒟 is another ∞-category with finite
products and 𝐹∶ 𝒞 → 𝒟 is a finite product-preserving functor, we write

𝐹cond ∶ Cond(𝒞) → Cond(𝒟)

for the functor given by post-composition with 𝐹.
2.6. Observe that if 𝐹∶ 𝒞 → 𝒟 admits a right adjoint 𝐺, then 𝐺cond is right adjoint to 𝐹cond.
2.7 Recollection (homotopy groups of condensed anima). The functor π0 ∶ Ani → Set pre-
serves finite products. Moreover, for each integer 𝑛 ≥ 1, the functor π𝑛 ∶ Ani∗ → Grp preserves
finite products. There is a canonical identification

Cond(Ani)∗ = Cond(Ani∗)

between pointed objects of condensed anima and condensed objects of pointed anima.We simply
write π0 ∶ Cond(Ani) → Cond(Set) for πcond0 and π𝑛 ∶ Cond(Ani)∗ → Cond(Grp) for

Cond(Ani)∗ = Cond(Ani∗) Cond(Grp) .
πcond𝑛

Explicitly, given a condensed anima 𝐴, the condensed set π0(𝐴)∶ Extr
op → Set is given by

π0(𝐴)(𝑆) ≔ π0(𝐴(𝑆)) .

Similarly, given a global section 𝑎∶ ∗ → 𝐴, the condensed group π𝑛(𝐴, 𝑎) is given by

π𝑛(𝐴, 𝑎)(𝑆) ≔ π𝑛(𝐴(𝑆), 𝑎) .
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2.8 Recollection [9, Construction 2.2.12]. Write

ev∗ ∶ Cond(Ani) → Ani

for the global sections functor, given by𝐴 ↦ 𝐴(∗). The functor ev∗ admits a left adjoint, that we
denote by

(−)disc ∶ Ani→ Cond(Ani)

Furthermore (−)disc is fully faithful. We call the image of (−)disc the discrete condensed anima.

2.9 Recollection (the restricted Yoneda embedding). The restricted Yoneda embedding defines
a functor

Top→ Fun×(Extrop,Ani) = Cond(Ani) , 𝑇 ↦ 𝑇
given by

𝑇 ↦ [𝑆 ↦ MapTop(𝑆, 𝑇)] .

Note that this functor factors through Cond(Set) ⊂ Cond(Ani).2 Also recall that this functor is
fully faithful when restricted to the full subcategory of Top spanned by the compactly generated
topological spaces [70, Proposition 1.7]. Since it rarely leads to confusion, we often omit the
underline and simply write 𝑇 for 𝑇.

2.2 Pro-objects and completions
We now turn to some recollections about proanima and their relation to condensed anima.

2.10 Recollection (π-finite and truncated anima). Let 𝐴 be an anima.

(1) We say that 𝐴 is truncated if there exists an integer 𝑛 ≥ 0 such that for all 𝑎 ∊ 𝐴 and 𝑘 ≥ 𝑛,
we have π𝑘(𝐴, 𝑎) = 0.

(2) We say that 𝐴 is π-finite if 𝐴 is truncated, π0(𝐴) is finite, and for all 𝑎 ∊ 𝐴 and 𝑘 > 0, the
group π𝑘(𝐴, 𝑎) is finite.

(3) We write Aniπ ⊂ Ani<∞ ⊂ Ani for the full subcategories of Ani spanned by the π-finite
and truncated anima, respectively.

2.11 Recollection (on various completions).

(1) Since Cond(Ani) admits cofiltered limits, the inclusions

Aniπ ⊂ Ani<∞ ⊂ Cond(Ani)

extend to cofiltered-limit-preserving functors

Pro(Aniπ) ↪ Pro(Ani<∞) → Cond(Ani) .

Here, the functor Pro(Ani<∞) → Cond(Ani) is not fully faithful. However, by [9, Exam-
ple 3.3.10; 34, Proposition 0.1], its restriction to Pro(Aniπ) is fully faithful.

2However, note that if 𝑇 is not T1, then the the sheafMapTop(−, 𝑇) is not generally accessible [70, Warning 2.14 &
Proposition 2.15]. So, depending onwhichway you dealwith set-theoretic issues, it is not a condensed set, cf. Remark 2.30.
However, in this paper, we only apply this functor to T1 topological spaces anyways.
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(2) The above chain of functors Pro(Aniπ) ↪ Pro(Ani<∞) → Cond(Ani) admits left adjoints

Cond(Ani) Pro(Ani<∞) Pro(Aniπ)(−)∧disc

(−)∧π

(−)∧π

that we call the prodiscretization, resp., profinite completion functors.

(3) Similarly, the inclusions Setfin ⊂ Cond(Set) and Grpfin ⊂ Cond(Grp) induce inclusions
Pro(Setfin) ⊂ Cond(Set) and Pro(Grpfin) ⊂ Cond(Grp) that admit left adjoints

Cond(Set) → Pro(Setfin) and (−)∧ ∶ Cond(Grp) → Pro(Grpfin)

that we refer to as profinite completion functors.

We now explain the effect of profintie completion of condensed anima on π0 and π1.
2.12 Lemma (completions & π0∕π1). Let 𝐴 be a condensed anima and 𝑎∶ ∗ → 𝐴 a point.

(1) The map π0(𝐴) → π0(𝐴∧
π) induced by the unit map 𝐴 → 𝐴∧

π exhibits π0(𝐴∧
π) as the profinite

completion of π0(𝐴).

(2) If π0(𝐴) ∊ Cond(Set) is discrete, then the unit map 𝐴 → 𝐴∧
π induces an isomorphism of

profinite groups
π1(𝐴, 𝑎)∧ ⥲ π1(𝐴∧

π , 𝑎) .

Proof. For (1), note that since the square of inclusions

Pro(Setfin) Cond(Set)

Pro(Aniπ) Cond(Ani)

commutes, so does the induced square

Cond(Ani) Pro(Aniπ)

Cond(Set) Pro(Setfin)

(−)∧π

π0 π0

of left adjoints.
For (2), since π0(𝐴) is a set, we may assume that π0(𝐴) = ∗. It suffices to show that, for any

finite group 𝐺, precomposition induces a bijection

MapCond(Grp)(π1(𝐴, 𝑎), 𝐺) ⥲ MapCond(Grp)(π1(𝐴
∧
π , 𝑎), 𝐺) = MapPro(Grpfin)(π1(𝐴

∧
π , 𝑎), 𝐺) .

To see this, note that we have a commutative square

π0MapPro(Aniπ)∗(𝐴
∧
π , B𝐺) MapPro(Grpfin)(π1(𝐴

∧
π , 𝑎), 𝐺)

π0MapCond(Ani)∗(𝐴, B𝐺) MapCond(Grp)(π1(𝐴, 𝑎), 𝐺),

π1
∼

π1
∼
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where the vertical maps are those induced by the unit transformation 𝐴 → 𝐴∧
π . Since π0(𝐴) = ∗,

by the equivalence of 1-truncated, pointed connected objects and group objects [HTT, Theorem
7.2.2.12], the horizontal maps are bijections. It thus suffices to see that the map

MapCond(Ani)∗(𝐴
∧
π , B𝐺) → MapCond(Ani)∗(𝐴, B𝐺)

induces a bijection on π0. But since 𝐺 is finite and Pro(Aniπ)∗ ↪ Cond(Ani)∗ is fully faithful,
by adjunction it is even an equivalence.

2.13 Remark. One cannot drop the assumption that π0(𝐴) is discrete in Lemma 2.12 (2). Indeed,
let 𝐴 be the condensed set represented by the topological circle S1. Then for any 𝑥 ∊ S1, we have

π1(𝐴, 𝑥) = ∗ but π1(𝐴∧
π , 𝑥) = 𝐙 .

2.3 Condensed∞-categories
Wenow recall some background on internal higher category theory and condensed∞-categories.
The main point is that it is often useful to use the fact that the∞-category of condensed∞-cate-
gories is equivalent to the∞-category of categories internal to condensed anima. We refer the
reader to [57, §3; 59, §2] for more background about internal higher category theory.

2.14Definition. Letℬ be an∞-categorywith finite limits. A category internal toℬ is a simplicial
object 𝐹∶ 𝚫op → ℬ satisfying the following conditions.

(1) Segal condition: For each integer 𝑛 ≥ 2, the natural map

𝐹([𝑛]) → 𝐹({0 < 1}) ×
𝐹({1})

𝐹({1 < 2}) ×
𝐹({2})

⋯ ×
𝐹({𝑛−1})

𝐹({𝑛 − 1 < 𝑛})

is an equivalence in ℬ.

(2) Univalence axiom: The natural square

𝐹([0]) 𝐹([0]) × 𝐹([0])

𝐹([3]) 𝐹({0 < 2}) × 𝐹({1 < 3})

∆

is a pullback square inℬ. Here, the left vertical map is given by restriction along the unique
map [3] → [0], the right vertical map is the product of the maps given by restriction along
the uniquemaps {0 < 2} → [0] and {1 < 3} → [0], and the bottom horizontal map is induced
by restriction along the inclusions {0 < 2} ↪ [3] and {1 < 3} ↪ [3].

We write
Cat(ℬ) ⊂ Fun(𝚫op, ℬ)

for the full subcategory spanned by the categories internal to ℬ.

2.15 Remark. Elsewhere in the literature, internal categories are also called complete Segal
objects.
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2.16. Joyal and Tierney [48] showed that the nerve construction defines an equivalence

N∶ Cat∞ ⥲ Cat(Ani)
𝐶 ↦ [[𝑛] ↦ MapCat∞([𝑛], 𝐶)]

from the∞-category of∞-categories to the∞-category of categories internal to anima. See [39]
for a modern, model-independent proof of this fact.

2.17. Themain example that we care about in this paper is the casewhereℬ = Cond(Ani). Since
the Segal conditions and the sheaf condition are both limit conditions, the canonical equivalence

Fun(Extrop, Fun(𝚫op,Ani)) ≃ Fun(𝚫op, Fun(Extrop,Ani))

restricts to an equivalence
Cond(Cat∞) ≃ Cat(Cond(Ani)) .

Therefore, we often implicitly identify Cond(Cat∞) with Cat(Cond(Ani)).

We now turn to some specific features of Cond(Cat∞).

2.18 Definition (continuous functors). The category of condensed∞-categories is cartesian
closed, see [57, Proposition 3.2.11]. For condensed∞-categories 𝒞 and𝒟, we denote the internal
Hom by

Funcond(𝒞,𝒟) .

Similarly, we write
Functs(𝒞,𝒟) ≔ Funcond(𝒞,𝒟)(∗)

for the∞-category of continuous functors 𝒞 → 𝒟.

2.19. Observe that the functor (𝒞,𝒟) ↦ Functs(𝒞,𝒟) is characterized by the existence of natural
equivalences

MapCat∞(𝒜, Fun
cts(𝒞,𝒟)) ≃ MapCond(Cat∞)(𝒜 × 𝒞,𝒟)

for each∞-category 𝒜.

2.20. Explicitly, Functs(𝒞,𝒟) is given by the end

Functs(𝒞,𝒟) ≃ ∫
𝑆∊Extrop

Fun(𝒞(𝑆),𝒟(𝑆)) ,

see, for example, [28, Proposition 2.3]. In particular, the objects in this∞-category are precisely
natural transformations 𝒞(−) → 𝒟(−) of functors Extrop → Cat∞.

Many of the condensed∞-categories we are interested come from pro-objects:

2.21 Observation. By taking internal categories on each side, the right adjoint fully faithful
embedding Pro(Aniπ) → Cond(Ani) of Recollection 2.11 induces a fully faithful right adjoint
functor

𝜄 ∶ Cat(Pro(Aniπ)) → Cond(Cat∞) .

Many of the examples of condensed∞-categories that we care about are in the image of this
embedding.
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For condensed∞-categories in the image of 𝜄, we can describe their value at Čech–Stone com-
pactifations explicitly:

2.22 Proposition. Consider 𝒞 ∊ Cat(Pro(Aniπ)) as a condensed∞-category via 𝜄 and let𝑀 be a
set. Then the functor

Functs(β(𝑀), 𝒞) →
∏

𝑚∊𝑀
𝒞({𝑚})

induced by the inclusions {𝑚} ↪ β(𝑀) is an equivalence of∞-categories.

Proof. It suffices to check that this functor becomes an equivalence after applyingMapCat∞([𝑛], −)
for every 𝑛. Since we have a natural chain of equivalences

MapCat∞([𝑛], Fun
cts(β(𝑀), 𝒞)) ≃ MapCond(Cat∞)(β(𝑀) × [𝑛], 𝒞)

≃ MapCond(Cat∞)(β(𝑀), ev[𝑛](𝒞)),

it suffices to show that the natural map

MapCond(Cat∞)(β(𝑀), ev[𝑛](𝒞)) →
∏

𝑚∊𝑀
ev[𝑛](𝒞)({𝑚})

is an equivalence. Since ev[𝑛](𝒞) is a profinite anima by assumption and both sides are clearly
compatible with limits, we may assume that ev[𝑛](𝒞) = 𝐴 is a π-finite anima.

By [SAG, Lemma E.1.6.5], there exists a Kan complex 𝐴∙ with values in finite sets such that
|𝐴∙| ≃ 𝐴. Since β(𝑀) is a compact projective object in Cond(Ani), it follows that the natural
map

|MapCond(Ani)(β(𝑀), 𝐴∙)| → MapCond(Ani)(β(𝑀), |𝐴∙|)

is an equivalence. Since every 𝐴𝑛 is finite, it follows thatMapCond(Ani)(β(𝑀), 𝐴∙) ≃
∏

𝑀 𝐴∙ is
an infinite product of Kan complexes. Since geometric realizations of Kan complexes commute
with arbitrary products,3 the natural map

MapCond(Ani)(β(𝑀), 𝐴) ≃ |MapCond(Ani)(β(𝑀), 𝐴∙)|⟶
∏

𝑀
|𝐴∙| ≃

∏

𝑀
𝐴

is an equivalence.

2.4 Recollection on shape theory
2.23 Recollection. For every∞-topos 𝒳, there exists a unique geometric morphism 𝑔∶ 𝒳 →
Ani and the pullback functor 𝑔∗ admits a pro-left adjoint 𝑔♯ ∶ 𝒳 → Pro(Ani). Then the shape
of 𝒳 is defined as the image

Π∞(𝒳) ≔ 𝑔♯(∗𝒳) ∊ Pro(Ani) .
The protruncated shape functor

Π<∞ ∶ RTop→ Pro(Ani<∞)

is defined as the composite

RTop
Π∞,,,→ Pro(Ani)

Pro(τ<∞),,,,,,,,→ Pro(Ani<∞)
3This follows from the fact that the homotopy groups of the geometric realization of a Kan complex are computed as

its simplicial homotopy groups, and these commute with infinite products.
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of the shape with the unique cofiltered limit preserving pro-extension of the functor

τ<∞ ∶ Ani→ Pro(Ani<∞), 𝐴 ↦ {τ≤𝑛 𝐴}𝑛

assigning to an anima its Postnikov tower. Similarly, the profinite shape is defined by composing
further with the profinite completion functor

Π̂∞ ∶ RTop
Π<∞,,,,→ Pro(Ani<∞)

(−)∧π,,,,→ Pro(Aniπ) .

2.24 Notation. For a topological space 𝑇, we write Π∞(𝑇) ∊ Pro(Ani) for the shape of the
∞-topos Sh(𝑇) of sheaves of anima on 𝑇. We write Π<∞(𝑇) for the protruncation of Π∞(𝑇).

We write LCH ⊂ Top for the full subcategory spanned by the locally compact Hausdorff
spaces.

2.25 Remark. If 𝑇 is a topological space that admits a CW structure, thenΠ∞(𝑇) coincides with
the underlying anima of 𝑇.

2.26 Lemma. The triangle

LCH

Cond(Ani) Pro(Ani<∞)

Π<∞

(−)∧disc

canonically commutes.

Proof. Let 𝑇 be a locally compact Hausdorff space. By [32, Corollary 4.9], there is a natural fully
faithful left exact left adjoint

Shpost(𝑇) ↪ Cond(Ani)∕𝑇
from the Postnikov completion of the∞-topos of sheaves on 𝑇 to condensed anima sliced over 𝑇.
Since the protruncated shapes of an∞-topos and its Postnikov completion coincide, we deduce
that this algebraic morphism induces an equivalence on protruncated shapes

Π<∞(Cond(Ani)∕𝑇) ⥲ Π<∞(𝑇)

Finally, observe that the protruncated shape of the slice exactly coincides with prodiscrete com-
pletion of the condensed set 𝑇.

2.27 Remark. Lemma 2.26 was also observed in [4, Theorem 4.12].

2.5 Recollection on proétale sheaves
We now turn to recalling some background about the proétale topology and proétale sheaves.
The following definition is from [10]:

2.28 Definition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes.

(1) We call 𝑓∶ 𝑋 → 𝑌 weakly étale, if both 𝑓 and its diagonal ∆𝑓 are flat.

(2) We write ProÉt𝑋 for the proétale site of 𝑋, i.e., the site of weakly étale 𝑋-schemes equipped
with the fpqc topology.
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(3) We furthermore write 𝑋proét ≔ Sh(ProÉt𝑋) for the proétale∞-topos of 𝑋.

2.29. We almost exclusively work with the hypercomplete proétale∞-topos 𝑋hyp
proét.

2.30 Remark (size issues). Since the category of weakly étale 𝑋-schemes is not small, Defi-
nition 2.28 introduces some set-theoretic issues. In the end, one can always circumvent these
issues and they do not have any serious effect on our results. For the more cautious reader, we
suggest one of the following two ways of reading this paper:

(1) Fix once and for all two strongly inaccessible cardinals 𝛿 < 𝜀. All schemes, spectral spaces, etc.
are then assumed to be 𝛿-small and all categorical constructions, such as taking sheaves on a
site, are taken with respect to the larger universe determined by 𝜀. In particular𝑋hyp

proét always
means hypersheaves of 𝜀-small anima on 𝛿-small weakly étale 𝑋-schemes, and similarly for
the∞-category of condensed anima Cond(Ani).

(2) If the reader does not want to work with universes, they may proceed as follows. For a
scheme 𝑋, choose a strong limit cardinal 𝜅 such that 𝑋 is 𝜅-small. Write ProÉt𝑋,𝜅 for the
category of 𝜅-small weakly étale 𝑋-schemes. We then define

𝑋hyp
proét,𝜅 ≔ Shhyp(ProÉt𝑋,𝜅) .

The assumption that 𝜅 is a strong limit cardinal guarantees that there are enough w-con-
tractibles in ProÉt𝑋,𝜅, see Definition 2.35. We then define

𝑋hyp
proét ≔ colim𝜅 𝑋

hyp
proét,𝜅

and similarly for the category of condensed anima. This is also the approach taken byClausen
and Scholze [70].
However, then some statements about 𝑋hyp

proét and Cond(Ani), such as Proposition 2.44, are
no longer true on the nose. In such a case, to correct the result, we make an implicit choice
of strong limit cutoff cardinal 𝜅, and𝑋hyp

proét is to be understood as𝑋
hyp
proét,𝜅. In the end, a choice

of such a 𝜅 is harmless and does not affect our results, see Remark 3.17.

The same discussion applies to the non-hypercomplete proétale∞-topos 𝑋proét.

We now prove a generalization of [10, Lemma 5.1.2 & Corollary 5.1.6].

2.31 Notation. For a scheme 𝑋, we denote the inclusion Ét𝑋 → ProÉt𝑋 of the the étale site into
the proétale site by 𝜈.

2.32 Proposition. Let 𝑋 be a qcqs scheme. Then the pullback functor 𝜈∗ ∶ 𝑋ét → 𝑋proét is fully
faithful when restricted to truncated objects.

Proof. First observe that since the left exact pullback functor 𝜈∗ preserves 𝑛-truncated objects
[HTT, Proposition 5.5.6.16], the truncated pullback functors are well-defined. Furthermore, for
an 𝑛-truncated proétale sheaf 𝐹, by [41, Proposition A.1] the sheaf condition can be stated as
follows:

(1) The presheaf 𝐹 sends finite disjoint unions of affine schemes proétale over 𝑋 to finite prod-
ucts.
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(2) For every surjection 𝑓∶ 𝑈 ↠ 𝑋 of affine schemes proétale over 𝑋 with associated Čech
nerve 𝑈∙ → 𝑋, the canonical map

𝐹(𝑋) → lim
[𝑖]∊𝚫≤𝑛+1

𝐹(𝑈𝑖)

is an isomorphism.

This is just the 𝑛-truncation of the sheaf condition as formulated in [SAG, Proposition A.3.3.1].
(One easily checks that the category ProÉtaff𝑋 ⊂ ProÉt𝑋 of affine proétale schemes over 𝑋, which
forms a basis for the proétale topology, satisfies the conditions stated there.)

Since the problem is local on 𝑋, we reduce to the case that 𝑋 is affine. Then, the category
ProÉtaff𝑋 is exactly given by those 𝑈 ∊ ProÉt𝑋 which can be written as a small cofiltered limit
𝑈 = lim𝑖∊𝐼 𝑈𝑖 of affine schemes 𝑈𝑖 ∊ Ét𝑋 . For some 𝑛 ≥ 0, let 𝐹 now be an object of 𝑋ét,≤𝑛. The
presheaf pullback of 𝐹 to the proétale site of 𝑋 is given by the formula 𝑈 ↦ colim𝑖∊𝐼op 𝐹(𝑈𝑖) on
all𝑈 ∊ ProÉtaff𝑋 . We wish to show, that this is already a sheaf. For this, we can just copy the proof
of [55, Proposition 7.1.3(2)]. The argument there works not only for equalizers, but for all finite
limits as they appear in our 𝑛-truncated sheaf condition. As 𝜈∗𝐹 restricts to 𝐹 on affine étale
schemes Étaff𝑋 , it is clear that we have 𝜈∗𝜈∗𝐹 = 𝐹 for all 𝐹 ∊ 𝑋ét,≤𝑛, i.e., the pullback τ≤𝑛 𝜈∗ is fully
faithful when restricted to 𝑛-truncated objects. See [56, Proposition A.5.33] for more details.

2.33Notation. Let𝑋 be a scheme.Wedenote byΠét
<∞(𝑋) the protruncated étale shapeΠ<∞(𝑋

hyp
ét )

and by Π̂ét
∞(𝑋) the profinite étale shape Π̂∞(𝑋

hyp
ét ).

2.34 Corollary. Let 𝑋 be a scheme. Then 𝜈 induces an equivalenceΠ<∞(𝑋
hyp
proét) → Π<∞(𝑋

hyp
ét ).

Proof. Immediate from Proposition 2.32 and [8, Example 4.2.8].

Basis of weakly contractible objects

Recall that an object 𝑌 of a site 𝒞 is weakly contractible if every covering𝑈 ↠ 𝑌 admits a section.
In the proétale site, weakly contractible qcqs objects are given by w-contractible schemes.

2.35 Definition. A qcqs scheme 𝑋 is w-contractible if every weakly étale surjection 𝑈 ↠ 𝑋 has
a section.

For the subsequent characterization of w-contractibles, recall the following fact on connected
components of qcqs schemes.

2.36 Lemma [STK, Tag 0900]. Let 𝑋 be a qcqs scheme. Then π0(𝑋), endowed with the quotient
topology induced by |𝑋|, is a profinite set.

2.37 Definition. Let 𝑋 be a qcqs scheme. We say that 𝑋 is w-local if the subspace 𝑋cl ⊂ |𝑋| of
closed points is closed and every connected component of 𝑋 has a unique closed point. We stay
that 𝑋 is w-strictly local if 𝑋 is w-local and every étale surjection 𝑈 ↠ 𝑋 admits a section.

2.38 Remark. As observed in [6, Proposition 3.1], since a w-strictly local scheme is a retract of
an affine scheme, every w-strictly local scheme is affine.

2.39 Remark. By [10, Lemma 2.2.9], a qcqs scheme 𝑋 is w-strictly local if 𝑋 is w-local and the
local rings at all closed points are strictly henselian.
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2.40 Example. Let 𝑘̄ be a separably closed field. Then any qcqs weakly étale 𝑘̄-scheme 𝑋 is
w-strictly local. Indeed, such a scheme is zero dimensional and thus, by Serre’s cohomological
characterization of affineness, affine. By [STK, Tag 092Q], it is therefore a cofiltered limit of finite
disjoint unions of Spec(𝑘̄) and hence w-strictly local.

2.41 Recollection [STK, Tag 0982]. A scheme 𝑋 is w-contractible if and only if it is w-strictly
local and π0(𝑋) ∊ Pro(Setfin) is extremally disconnected. In particular, w-contractible schemes
are affine.

2.42 Notation. For a scheme 𝑋, we write ProÉtwc𝑋 ⊂ ProÉt𝑋 for the full subcategory spanned
by the w-contractible schemes.

2.43Recollection [STK, Tag 0990]. The subcategoryProÉtwc𝑋 ⊂ ProÉt𝑋 is a basis for the proétale
topology. But beware that ProÉtwc𝑋 is not closed under fiber products in ProÉt𝑋 .

2.44 Proposition. Let 𝑋 be a scheme. Restriction along the inclusion of sites ProÉtwc𝑋 ⊂ ProÉt𝑋
defines an equivalence of hypercomplete∞-topoi

𝑋hyp
proét = Shhyp(ProÉt𝑋) ⥲ Shhyp(ProÉtwc𝑋 ) .

Moreover, this∞-topos can be identified with the∞-topos of finite product-preserving presheaves

Fun×((ProÉtwc𝑋 )op,Ani) .

Proof. This follows from Recollection 2.43 and [3, Corollary A.7] combined with the defining
property of w-contractible schemes. Details are given in [56, Proposition 2.2.12].
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Part I

Foundational results
3 The condensed homotopy type
In this section, we introduce the condensed homotopy type of a scheme 𝑋. As explained in the
introduction, we give three definitions, and prove that they are equivalent. The first, given in §3.1,
is the relative shape of the hypercomplete proétale∞-topos 𝑋hyp

proét over the∞-topos Cond(Ani)
of condensed anima. The second, given in §3.2, is as the unique hypercomplete proétale cosheaf
whose value on a w-contractible affine 𝑈 is the profinite set π0(𝑈) of connected components of
𝑈. The last, given in §3.3, is as the condensed classifying anima of the Galois category Gal(𝑋)
introduced by Barwick–Glasman–Haine [8]. In §3.4, we conclude the section with a sample
computation: given a henselian local ring 𝑅 with residue field 𝜅, we show inclusion of the closed
point induces an equivalence

BGal𝜅 ≃ Πcond
∞ (Spec(𝜅)) ⥲ Πcond

∞ (Spec(𝑅)) .

3.1 Definition via the relative shape
For an∞-topos𝒳, the idea of shape theory relies on the existence of a canonical colimit preserv-
ing functor Γ♯ ∶ 𝒳 → Pro(Ani). We define the condensed homotopy type of a qcqs scheme in the
tradition of shape theory but relative to the base Cond(Ani). To do this, we use the identification

𝑋hyp
proét ≃ Fun×

(
(ProÉtwc𝑋 )op,Ani

)

of the hypercomplete proétale∞-topos as the∞-topos of finite-product preserving presheaves
on the site of w-contractible weakly étale 𝑋-schemes (Proposition 2.44).

3.1 Definition. Let 𝑋 be a scheme. Write

𝜋♯ ∶ PSh(ProÉtwc𝑋 ) → Cond(Ani)

for the colimit-preserving extension of

π0 ∶ ProÉtwc𝑋 → Extr↪ Cond(Ani)

along the Yoneda embedding.

3.2 Observation. The functor 𝜋♯ admits a right adjoint

𝜋∗ ∶ Cond(Ani) → PSh(ProÉtwc𝑋 )

given by the assignment

𝐴 ↦ [𝑊 ↦ 𝐴(π0(𝑊))] .

Note that since the functor π0 ∶ ProÉtwc𝑋 → Cond(Ani) preserves finite disjoint unions, the right
adjoint to 𝜋♯ factors through

Fun×
(
(ProÉtwc𝑋 )op,Ani

)
⊂ PSh(ProÉtwc𝑋 ) .
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3.3 Notation. Given a scheme 𝑋, we also write 𝜋♯ for the composite

𝑋hyp
proét Fun×

(
(ProÉtwc𝑋 )op,Ani

)
Cond(Ani) ,∼ 𝜋♯

where the left-hand functor is the equivalence of∞-topoi from Proposition 2.44.

Next, we need a generalization of [10, Lemma 4.2.13].

3.4 Proposition. Let 𝑋 be a scheme. Then:

(1) The functor 𝜋♯ ∶ 𝑋
hyp
proét → Cond(Ani) is left adjoint to 𝜋∗ ∶ Cond(Ani) → 𝑋hyp

proét.

(2) For each condensed anima 𝐴 and w-contractible affine𝑊 ∊ ProÉt𝑋 , there is a natural equiva-
lence

𝜋∗(𝐴)(𝑊) ≃ 𝐴(π0(𝑊)) .

Proof. As explained in Observation 3.2, the functor

𝜋∗ ∶ Cond(Ani) → PSh(ProÉtwc𝑋 )

factors through 𝑋hyp
proét. Hence 𝜋

∗ remains right adjoint to the restriction of 𝜋♯. In particular, we
have 𝜋∗(𝐴)(𝑈) ≃ 𝐴(π0(𝑈)).

3.5 Remark. The right adjoint 𝜋∗ is part of a geometric morphism of∞-topoi

(3.6) Cond(Ani) 𝑋hyp
proét ,

𝜋∗

𝜋∗

which is induced by the morphism of sites

𝜋∶ Pro(Setfin)⟶ ProÉt𝑋 ,
𝑆 = lim

𝑖∊𝐼
𝑆𝑖 ⟼𝑆⊗𝑋 ≔ lim

𝑖∊𝐼

∐

𝑠∊𝑆𝑖
𝑋.

For details, see [56, Theorem 2.2.13].

3.7 Definition. Let 𝑋 be a scheme.

(1) The condensed homotopy type of 𝑋 is the condensed anima

Πcond
∞ (𝑋) ≔ 𝜋♯(1) ∊ Cond(Ani) .

(2) The condensed set of connected components of 𝑋 is the condensed set

πcond0 (𝑋) ≔ π0(Πcond
∞ (𝑋)) ∊ Cond(Set) .

3.8. The first part of Definition 3.7 says that the condensed homotopy type is the relative shape
of the ∞-topos 𝑋hyp

proét over the ∞-topos Cond(Ani), see [13, §4.1] for background on relative
shapes. Since sending a scheme 𝑋 to 𝜋∗ ∶ 𝑋

hyp
proét → Cond(Ani) defines a functor

Sch→ (RTop∞)∕Cond(Ani) .

Composition with the relative shape over Cond(Ani), therefore defines a functor

Πcond
∞ ∶ Sch→ Cond(Ani) , 𝑋 ↦ Πcond

∞ (𝑋) .(3.9)
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3.10 Warning. The first point of [10, Lemma 4.2.13] is not true in the stated generality. It says
that (for condensed sets 𝐴) the formula 𝜋∗(𝐴)(𝑈) ≃ 𝐴(π0(𝑈)) in Proposition 3.4 holds for all
qcqs schemes 𝑈 of the proétale site of 𝑋. It seems, however, that the proof in loc. cit. only works
for w-contractible schemes. Indeed, if this stronger claim was true, it would follow that for all
qcqs schemes 𝑋 one has

MapCond(Set)(π0(𝑋), 𝐴) ≃ 𝐴(π0(𝑋)) ≃ 𝜋∗(𝐴)(𝑋)
≃ Map𝑋hypproét

(𝑋, 𝜋∗(𝐴))

≃ MapCond(Ani)(Π
cond
∞ (𝑋), 𝐴)

≃ MapCond(Set)(π
cond
0 (𝑋), 𝐴) .

This would then imply that the condensed set of connected components matches the usual one,
i.e., πcond0 (𝑋) = π0(𝑋) in Cond(Set). As we show in Example 4.24, this is not generally the case.
However, this is true if 𝑋 has finitely many irreducible components, see Corollary 4.19.

The definition tells us the value of the condensed homotopy type on w-contractible schemes:

3.11 Example. Let 𝑋 be a w-contractible scheme. Then, by definition,

Πcond
∞ (𝑋) = 𝜋♯(1) = π0(𝑋) .

In particular, if 𝑋 is the spectrum of a separably closed field, then Πcond
∞ (𝑋) = ∗.

3.12. One consequence of Example 3.11 is that every geometric point 𝑥̄ → 𝑋 defines a point

∗ = Πcond
∞ (𝑥̄) → Πcond

∞ (𝑋)

of the condensed homotopy type. Thus we can take homotopy groups at geometric points:

3.13 Definition. Let 𝑋 be a scheme, let 𝑥̄ → 𝑋 be a geometric point, and let 𝑛 ≥ 1. The 𝑛-th
condensed homotopy group of 𝑋 at 𝑥̄ is the condensed group (abelian if 𝑛 ≥ 2)

πcond𝑛 (𝑋, 𝑥̄) ≔ π𝑛(Πcond
∞ (𝑋), 𝑥̄) .

From the definition, it is easy to see that the condensed homotopy type refines the protrun-
cated and profinite étale homotopy types. For this result, recall our notation on shapes and étale
homotopy types from §2.4 and Notation 2.33.

3.14 Lemma. Let 𝑋 be a scheme. Then there are natural equivalences

Πcond
∞ (𝑋)∧disc ≃ Πét

<∞(𝑋) and Πcond
∞ (𝑋)∧π ≃ Π̂ét

∞(𝑋) .

Proof. By Corollary 2.34, the protruncated shapes of the (hypercomplete) étale and proétale∞-
topoi agree. This remains true after profinite completion. Thus the claims follow from the claim
that the triangle of left adjoints

𝑋hyp
proét

Cond(Ani) Pro(Ani<∞)

𝜋♯ Πét
<∞

(−)∧disc

commutes. To see this, note that the corresponding diagram of right adjoints commutes by the
uniqueness property of the pro-extension Pro(Ani) → 𝑋hyp

proét of the constant sheaf functor.
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3.2 Characterization as a hypercomplete proétale cosheaf
The goal of this subsection is to prove the following characterization of the condensed homotopy
type and derive some consequences for the étale homotopy type.

3.15 Notation. We write Aff wc ⊂ Sch for the full subcategory spanned by the w-contractible
schemes. (Recall from Recollection 2.41 that w-contractible schemes are affine.)

3.16 Proposition. The condensed homotopy type

Πcond
∞ ∶ Sch→ Cond(Ani)

is the unique hypercomplete proétale cosheaf whose restriction to w-contractible schemes is given
by the functor

π0 ∶ Affwc → Extr ⊂ Cond(Ani) .

Proof. First notice that since 𝜋♯ preserves colimits, by definition Πcond
∞ carries proétale hyper-

coverings to colimit diagrams. Moreover, by construction Πcond
∞ agrees with π0 when restricted

to w-contractible schemes (see Example 3.11). Thus it suffices to show that every scheme admits
a proétale hypercover by w-contractible schemes. Since every scheme admits a Zariski cover by
qcqs schemes, we can reduce to the qcqs case. In this case, the claim is the content of [STK, Tag
09A1].

3.17 Remark (on set theory). Let 𝑋 be a scheme and 𝜅 a strong limit cardinal such that 𝑋 is
𝜅-small. Then there exists a hypercover by w-contractibles𝑊∙ → 𝑋 such that𝑊𝑛 is 𝜅-small for
all 𝑛. Hence the formula

Πcond
∞ (𝑋) ≃ colim𝚫op π0(𝑊∙)

shows that for 𝜅 < 𝜅′ an implicit choice of cutoff cardinal in Definition 3.7 does not affect the
outcome. More precisely, under the embedding Cond(Ani)𝜅 ↪ Cond(Ani)𝜅′ one gets carried
to the other. Equivalently, if one takes the approach to dealing with set theory explained in
Remark 2.30 (2), then for all choices of suitable cutoff cardinals the images of the condensed ho-
motopy type in the colimit Cond(Ani) = colim𝜅 Cond(Ani)𝜅 agree. Therefore we can continue
to leave choices of cutoff cardinals implicit without getting into trouble.

If one would try to set up the theory in the setting of light condensed anima, one would get a
different result in general. See also Remark 3.41.

3.18 Corollary.

(1) The functor
Πét
<∞ ∶ Sch→ Pro(Ani<∞)

is the unique hypercomplete proétale cosheaf valued in Pro(Ani<∞)whose restriction to w-con-
tractible affines coincides with

π0 ∶ Affwc → Extr↪ Pro(Ani<∞) .

(2) The functor
Π̂ét
∞ ∶ Sch→ Pro(Aniπ)

is the unique hypercomplete proétale cosheaf valued in Pro(Aniπ) whose restriction to w-con-
tractible affines coincides with

π0 ∶ Affwc → Extr↪ Pro(Aniπ) .
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Proof. Since both (−)∧disc and (−)
∧
π are left adjoints, the composites

Sch Cond(Ani) Pro(Ani<∞)
Πcond
∞ (−)∧disc

and

Sch Cond(Ani) Pro(Aniπ)
Πcond
∞ (−)∧π

are still hypercomplete proétale cosheaves. Moreover, on w-contractible affines they both are
given by 𝑈 ↦ π0(𝑈) ∊ Extr. In Lemma 3.14, we have seen that these functors recover the
protruncated and profinite étale homotopy types, respectively.

3.19 Remark. It follows immediately from Proposition 3.16 that the ‘condensed shape’ defined
in [40, Appendix A] agrees with our notions.

In [40], Hemo–Richarz–Scholbach prove that Πcond
∞ (𝑋) classifies local systems on 𝑋 with

coefficients in any condensed ring. We recall the precise statement here; for this, we need the
following definition from [40]. In order to state it, recall that we write 𝜋∗ for the natural pullback
functor Cond(Ani) → 𝑋hyp

proét of Observation 3.2.

3.20 Definition. Let Λ be a condensed ring.

(1) We define the condensed∞-category PerfΛ of perfect complexes overΛ, to be the condensed
∞-category defined by

Extrop → Cat∞
𝑆 ↦ PerfΛ(𝑆) .

Here, PerfΛ(𝑆) is the usual∞-category of perfect complexes over the ordinary ring Λ(𝑆).

(2) Let 𝑋 be a qcqs scheme. Write D(𝑋proét; Λ) for the derived∞-category of 𝜋∗Λ-modules on
𝑋. We define the∞-category of lisse Λ-modules Dlis(𝑋proét; Λ) to be the full subcategory of
D(𝑋proét; Λ) spanned by the dualizable objects.

3.21 Proposition [40, Proposition A.1]. There is a natural equivalence of∞-categories

Functs(Πcond
∞ (𝑋),PerfΛ) ≃ Dlis(𝑋proét; Λ) .

3.22 Remark. Proposition 3.21 is one of themainmotivations to study the condensed homotopy
type. Indeed, the analogous statement for the ususal étale homotopy type Πét

∞(𝑋) is not even
true in for Λ = 𝐐𝓁. See [10, Example 7.4.9] for a concrete counterexample.

3.3 Definition via exodromy
In this subsection,we explainwhy the pyknotic étale homotopy type defined in [8, Remark 13.8.10]
agrees with Πcond

∞ (𝑋). For this, we recall the following definition from [8] in the general setting
of coherent∞-topoi, but we are most interested in the case of the étale∞-topos of a scheme. In
order to understand the general definition, the reader may wish to review the theory of coherent
∞-topoi from [SAG, Appendix A] or [8, Chapter 3].
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3.23 Definition. Let 𝒳 be a coherent∞-topos. The Galois∞-category of 𝒳 is the condensed
∞-category Gal(𝒳) defined by the functor

Pro(Setfin)op → Cat∞
𝑆 ↦ Fun∗,coh(𝒳, Sh(𝑆)) .

Here, Fun∗,coh(𝒳, Sh(𝑆)) is the∞-category of coherent algebraic morphisms 𝑠∗ ∶ 𝒳 → Sh(𝑆) of
∞-topoi, i.e., those left exact left adjoints that send truncated coherent objects of 𝒳 to locally
constant constructible sheaves of anima on the topological space 𝑆.

The assignment 𝒳 ↦ Gal(𝒳) defines a functor from the∞-category of coherent∞-topoi
and coherent geometric morphisms to Cond(Cat∞).

Now we explain what this definition means more concretely in the two examples we are
interested in in this paper.

3.24 Recollection. Let𝑋 be a qcqs scheme. Then the∞-topos𝑋ét is coherent and by [8, Lemma
9.5.3&Proposition 9.5.4], the truncated coherent objects of𝑋ét are the constructible étale sheaves
of anima on 𝑋.

3.25 Notation. Let 𝑋 be a qcqs scheme. We write Gal(𝑋) ≔ Gal(𝑋ét).

3.26 Recollection. Let 𝑋 be a qcqs scheme. Since the∞-topos 𝑋ét is 1-localic, for a profinite
set 𝑆, the value Gal(𝑋)(𝑆) is equivalent to the 1-category of algebraic morphisms of 1-topoi

𝑠∗ ∶ 𝑋ét,≤0 → Sh(𝑆)≤0

that send constructible étale sheaves of sets to locally constant constructible sheaves of sets on
𝑆. In particular, the global sections Gal(𝑋)(∗) recovers the category of points of the étale topos
of 𝑋.

3.27 Recollection. Let 𝑇 be a spectral space (e.g., the underlying space of a qcqs scheme).
Then the∞-topos Sh(𝑇) is coherent and by [8, Lemma 9.5.3 & Proposition 9.5.4], the truncated
coherent objects of Sh(𝑇) are the constructible sheaves of anima on 𝑇.

3.28 Notation. For a spectral space 𝑇, we write Gal(𝑇zar) ≔ Gal(Sh(𝑇)).

3.29 Recollection. Let 𝑇 be a spectral space. Since spectral spaces are sober, by [8, Example
3.7.1] and [HTT, Remark 6.4.5.3], for a profinite set 𝑆, the value Gal(𝑇zar)(𝑆) is equivalent to the
poset of quasicompact maps 𝑓∶ 𝑆 → 𝑇 ordered by pointwise specialization: 𝑓 ≤ 𝑔 if and only if
for all 𝑠 ∊ 𝑆, we have 𝑓(𝑠) ∊ {𝑔(𝑠)}. In particular, Gal(𝑇zar)(∗) recovers the specialization poset of
𝑇.

3.30 Remark. Note that the condensed set underlying the condensed poset Gal(𝑇zar) is indeed
a condensed set, i.e., is 𝜅-accessible for some 𝜅. In contrast, the condensed set represented by the
topological space 𝑇 is typically not 𝜅-accessible, see [70, Warning 2.14]. The difference between
the two is that Gal(𝑇zar)(𝑆) is given by the set of quasicompact maps 𝑆 → 𝑇, as opposed to all
continuous maps.

3.31 Recollection. For a qcqs scheme 𝑋, the condensed∞-categoriesGal(𝑋) andGal(𝑋zar) are
in the image of the fully faithful functor

𝜄 ∶ Cat(Pro(Aniπ)) → Cond(Cat∞)
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of Observation 2.21. In fact, if we denote by Layπ the full subcategory of Cat∞ spanned by π-fi-
nite layered categories in the sense of [8, Definition 2.3.7], thenGal(𝑋) andGal(𝑋zar) are even in
the image of the fully faithful functor Pro(Layπ) → Cond(Cat∞). See [8, §13.5] for more details.

Now we fix some notation regarding condensed∞-categories and classifying anima.

3.32 Definition. We define condensed∞-categories Cond(Ani) and Cond(Set) by the assign-
ments

𝑆 ↦ Cond(Ani)∕𝑆 and 𝑆 ↦ Cond(Set)∕𝑆 ,
respectively.

3.33 Notation. We denote the left adjoint to the inclusion Ani ↪ Cat∞ by B∶ Cat∞ → Ani.
Given an∞-category 𝒞, we call B𝒞 the classifying anima of 𝒞.

3.34. The functor B preserves finite products. Hence post-composition with B induces a functor

Bcond ∶ Cond(Cat∞) → Cond(Ani)

that is left adjoint to the inclusion Cond(Ani) ↪ Cond(Cat∞).

3.35Definition. Given a condensed∞-category𝒞, we callBcond(𝒞) ∊ Cond(Ani) the condensed
classifying anima of 𝒞.

To see the desired comparison, the idea is that, by [80, Corollary 1.2], we have a natural
equivalence

Functs(Gal(𝑋),Cond(Ani)) ≃ 𝑋hyp
proét .

In other words, in the condensed world, 𝑋hyp
proét is a presheaf∞-category on Gal(𝑋)op. But the

shape of a presheaf∞-topos is given by taking the classifying anima of the∞-category that it is
presheaves on; the same holds in the condensed world.

3.36 Proposition. Let𝑋 be a qcqs scheme. Then there is a natural equivalence of condensed anima

Πcond
∞ (𝑋) ≃ BcondGal(𝑋) .

Proof. This is an immediate consequence of [80, Theorem 1.2] and [59, Proposition 4.4.1]. For
the reader not so familiar with the theory developed in [59], we spell out a more hands-on proof.
Recall that for∞-categories 𝒞 and𝒟, the functor

Fun(B𝒞,𝒟) → Fun(𝒞,𝒟)

induced by precomposition along 𝒞 → B𝒞 is fully faithful (since B𝒞 ≃ 𝒞[𝒞−1] is the localization
of 𝒞 obtained by inverting all maps, this follows from the universal property of localization).
Since limits of fully faithful functors are fully faithful [37, Proposition 2.1; 56, Proposition A.1.3],
it follows that precomposition with 𝑏∶ Gal(𝑋) → BcondGal(𝑋) defines a fully faithful functor

Functs(BcondGal(𝑋),Cond(Ani)) Functs(Gal(𝑋),Cond(Ani)) .𝑏∗

Furthermore, by [80, Lemma 4.3] this functor admits a left adjoint 𝑏♯.
By [80, Corollary 1.2] we have a natural equivalence 𝑋hyp

proét ≃ Functs(Gal(𝑋),Cond(Ani)).
Under this equivalence the functor

𝜋∗ ∶ Cond(Ani) → 𝑋hyp
proét
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agrees with the functor given by precomposing with the unique morphism Gal(𝑋) → ∗. We
write 𝑎∶ BcondGal(𝑋) → ∗ for the unique morphism, and obtain a commutative triangle

Functs(BcondGal(𝑋),Cond(Ani)) 𝑋hyp
proét

Cond(Ani) .

𝑏∗

𝑎∗ 𝜋∗

But now since 𝑏∗ is fully faithful and 𝑏∗(1) = 1, it follows that 𝑏♯(1) = 1, Thus,

𝜋♯(1) = 𝑎♯𝑏♯(1) = 𝑎♯(1) .

Finally, by [80, Corollary 3.20] we have

Functs(BcondGal(𝑋),Cond(Ani)) ≃ Cond(Ani)∕BcondGal(𝑋)

and the functor 𝑎♯ identifies with the forgetful functor. In particular 𝑎♯(1) ≃ BcondGal(𝑋).

3.37 Corollary. Let 𝑋 be a qcqs scheme. If dim(𝑋) = 0, then Πcond
∞ (𝑋) = Gal(𝑋) and this con-

densed anima is a 1-truncated profinite anima.

Proof. This is immediate from [36, Observation 1.25] and Recollection 3.31.

3.38 Example (Πcond
∞ of a field). Let 𝑘 be a field and choose a separable closure 𝑘̄ of 𝑘. Write

Gal𝑘 for the absolute Galois group of 𝑘 with respect to 𝑘̄. Then the choice of separable closure
induces an equivalence

Πcond
∞ (Spec(𝑘)) = Gal(Spec(𝑘)) ≃ BGal𝑘 .

The left-hand identification follows fromCorollary 3.37, and the right-hand identification follows
from [8, Examples 11.2.1 and 12.2.1].

We do not use the next corollary in the remainder of this article, but we include it for com-
pleteness:

3.39 Corollary. Let 𝑋 be a qcqs scheme. If dim(𝑋) = 0, then Πcond
∞ (𝑋) = ∗ if and only if the

reduced scheme 𝑋red is Spec(𝑘) for 𝑘 a separably closed field.

Proof. As the étale∞-topos is invariant under universal homeomorphisms, the same holds for
Gal and thereforeΠcond

∞ . As 𝑋 → 𝑋red is a universal homeomorphism, the if direction follows by
the Example 3.38. For the reverse direction, note that Pt(𝑋ét) of a 0-dimensional affine scheme
is contractible only if 𝑋 = Spec(𝑅) for 𝑅 a local ring with separably closed residue field 𝑘. For
such a scheme, it is 𝑋red = Spec(𝑘).

3.4 Computation: Πcond
∞ of henselian local rings

We conclude this section by explaining how to use the definitions to show that the condensed
homotopy type of a w-strictly local scheme 𝑋 (in the sense of Definition 2.37) agrees with the
profinite set π0(𝑋) of connected components of 𝑋. This allows for a direct computation of the
condensed homotopy type of a henselian local ring.
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3.40 Proposition. Let 𝑋 be a w-strictly local scheme. ThenΠcond
∞ (𝑋) ≃ π0(𝑋).

3.41 Remark. Let𝑋 be a qcqs scheme that locally can be written as the spectrum of a countable
colimit of finite type𝐙-algebras. Then one can show that there is a hypercover𝑊∙ → 𝑋 consisting
of w-strictly local 𝑋-schemes with the property that π0(𝑋) is a light condensed set. Hence it
follows from Proposition 3.40 that in this case Πcond

∞ (𝑋) is a light condensed anima in the sense
that it is in the image of the fully faithful functor

Sh(Pro(Setfin)ℵ1) ↪ Cond(Ani) .

For a general scheme 𝑋, the condensed homotopy type Πcond
∞ (𝑋) need not be light.

Recall that the proétale site is “tensored” over profinite sets (cf. [10, Example 4.1.9]).

3.42 Lemma. Let 𝑋 be an affine scheme and 𝑓0 ∶ 𝑆 → π0(𝑋) a map from a profinite set. Let 𝑋′ =
"𝑋 ⊗π0(𝑋) 𝑆" be the affine scheme constructed (functorially) in [10, Lemma 2.2.8] with a proétale
map 𝑓∶ 𝑋′ → 𝑋 satisfying π0(𝑓) = 𝑓0. If 𝑋 is w-strictly local, then so is 𝑋′.

Proof. We can split the construction of𝑋′ into two steps: first consider𝑋′′ = 𝑋⊗𝑆 coming from
"tensoring" by 𝑆. It satisfies π0(𝑋′′) = π0(𝑋) × 𝑆. Then realize 𝑋′ as a closed subscheme of 𝑋′′

that is moreover an intersection of clopen subschemes, by looking at 𝑆 ⊂ π0(𝑋) × 𝑆 = π0(𝑋′′)
and writing 𝑆 as an intersection of clopen subsets in this larger set.

Let us first check it for𝑋′′. By definition and [10, Lemma 2.2.9], an affine scheme is w-strictly
local if it is w-local and all of its connected components are spectra of strictly henselian rings.
Here, we are using the following observation: the connected components of a w-local affine
scheme are spectra of local rings. Indeed, they are affine (being closed subschemes of an affine
scheme) and have a single closed point (by definition of w-locality). Thus, Zariski localizations
at closed points of a w-local affine scheme match the corresponding connected components.

One checks that both of these conditions are satisfied for 𝑋′′ = 𝑋 ⊗ 𝑆 by checking the
following facts: π0(𝑋⊗𝑆) = π0(𝑋)×𝑆, every connected component of𝑋⊗𝑆 is isomorphic (as a
scheme) to some connected component of𝑋, and (𝑋⊗𝑆)cl ≃ 𝑋cl⊗𝑆. Each of those is reasonably
easy to check, as 𝑋 ⊗ 𝑆 is defined as an inverse limit of the form lim𝑖 𝑋𝑆𝑖 = lim𝑖(𝑋 ⊔ … ⊔ 𝑋)
where the transition maps restricted to each copy of 𝑋 appearing there are just identities onto
another copy of 𝑋. Here 𝑆 = lim𝑖 𝑆𝑖 for finite sets 𝑆𝑖 .

The second step of passing from 𝑋′′ to 𝑋′ by intersecting an inverse system of clopen sub-
schemes follows in a similar way.

Proof of Proposition 3.40. By Proposition 3.16, this statement holds when 𝑋 is w-contractible. In
general, pick a hypercover of the profinite set π0(𝑋) by extremally disconnected profinite sets. By
[10, Lemma 2.2.8], Recollection 2.41, and Lemma 3.42, we obtain a proétale hypercover 𝑋∙ → 𝑋
by w-contractible affine schemes4 that recovers the original hypercover of π0(𝑋) after applying
π0. We compute

Πcond
∞ (𝑋) ≃ colim

[𝑛]∊𝚫op
Πcond
∞ (𝑋𝑛)

≃ colim
[𝑛]∊𝚫op

π0(𝑋𝑛) ≃ π0(𝑋) ,

as desired.
4Here we have used that the functor in loc. cit. commutes with limits and respects covers.
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We now move on to the promised applications.

3.43 Corollary. Let 𝑆 be a profinite set and 𝑋 a w-strictly local scheme. Then

Πcond
∞ (𝑋 ⊗ 𝑆) ≃ π0(𝑋) × 𝑆 .

Proof. This follows from Proposition 3.40 and Lemma 3.42 with 𝑓0 = pr1 ∶ 𝜋0(𝑋) × 𝑆 → 𝜋0(𝑋)
together with the equality π0(𝑋 ⊗ 𝑆) = π0(𝑋) × 𝑆.

3.44 Corollary. Let 𝑅 be a henselian local ring with residue field 𝜅. Then the inclusion of the closed
point Spec(𝜅) ↪ Spec(𝑅) induces an equivalence

Πcond
∞ (Spec(𝜅)) ⥲ Πcond

∞ (Spec(𝑅))

and both are equivalent to BGal𝜅 .

Proof. Write 𝑋 = Spec(𝑅) and 𝑥 = Spec(𝜅). Fix a separable closure 𝜅 of 𝜅 and let 𝑅sh be the
corresponding strict henselization. Writing 𝜅 as an increasing union of finite separable exten-
sions (and using that FÉt𝑥 ≃ FÉt𝑋) provides a presentation of 𝑋′ = Spec(𝑅sh) as a pro-(finite
étale) cover of 𝑋, see [STK, Tag 0BSL]. Let 𝑋∙ be the Čech nerve of this cover 𝑋′ → 𝑋. As the
equivalence FÉt𝑥 ≃ FÉt𝑋 extends to the categories of pro-objects, we compute that 𝑋∙ writes as

⋯ 𝑋′ ⊗Gal𝜅 × Gal𝜅 𝑋′ ⊗Gal𝜅 𝑋′

compatiblywith the analogous presentation of the Čech nerve 𝑥∙ of 𝑥̄ = Spec(𝜅)) → Spec(𝜅) = 𝑥.
Applying Πcond

∞ to the corresponding “ladder” diagram (coming from the map 𝑥∙ → 𝑋∙) and
using that, for every𝑚 ∊ 𝐍,

Gal𝑚𝜅 ≃ Πcond
∞ (𝑥̄ ⊗ Gal𝑚𝜅 ) → Πcond

∞ (𝑋′ ⊗Gal𝑚𝜅 ) ≃ Gal𝑚𝜅

is an isomorphism (where we are using Corollary 3.43 and the fact that both 𝑥̄ and 𝑋′ are
connected w-contractible schemes), we conclude.

4 Connected components of the condensed homotopy type
Let 𝑋 be a qcqs scheme. In this section, we give an explicit description of the condensed set of
connected components πcond0 (𝑋) of the condensed homotopy type Πcond

∞ (𝑋). To do so, we make
use of the Galois category Gal(𝑋zar) of the Zariski∞-topos in the sense of Definition 3.23. In
§4.1, we show that the condensed connected components of BcondGal(𝑋zar) agree with πcond0 (𝑋).
In §4.2, we use this description to show that if𝑋 has finitely many irreducible components, then
πcond0 (𝑋) agrees with the profinite set π0(𝑋) of connected components (Corollary 4.19). We also
give examples of connected schemes whose πcond0 (𝑋) is nontrivial and show that πcond0 (𝑋) can
be quite exotic in general. Finally, in §4.3, we use our explicit description of πcond0 (𝑋) to compute
the condensed and étale homotopy types of the ring of continuous functions from a compact
Hausdorff space to 𝐂, see Corollary 4.33.
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4.1 Pro-Zariski sheaves
Recall that for a scheme 𝑋, we will write 𝑋zar for the∞-topos of Zariski-sheaves on 𝑋.

4.1 Definition. Let 𝑋 be a qcqs scheme. Let us write 𝑋constr
zar for the full subcategory of Zariski

sheaves, that is spanned by the constructible sheaves on 𝑋, i.e., those sheaves that are constant
with finite stalks on a finite constructible stratification of 𝑋. We call the∞-topos

𝑋hyp
prozar ≔ Shhypeff (Pro(𝑋constr

zar ))

of hypersheaves for the effective epimorphism topology on Pro(𝑋constr
zar ), the hypercomplete

prozariski topos of 𝑋. Since pullbacks along qcqs morphisms of schemes preserve constructible
sheaves, 𝑋hyp

prozar is functorial in 𝑋.

4.2 Remark. This construction makes sense more generally for any bounded coherent∞-topos
(in the sense of [SAG, Appendix A]) and was called solidification in [9] and pyknotification in
[80].

4.3. Let 𝑋 be a qcqs scheme. The embedding 𝑋zar → 𝑋ét preserves constructible sheaves and
thus defines a functor

𝑋constr
zar → 𝑋constr

ét .

Extending to proobjects we obtain amorphism of sites 𝜌∗ ∶ Pro(𝑋constr
zar ) → Pro(𝑋constr

ét ) and thus
an algebraic morphism of∞-topoi

𝑋hyp
prozar → Shhypeff (Pro(𝑋constr

ét )) .

Finally, [55, Example 7.1.7] provides an equivalence 𝑋hyp
proét ≃ Shhypeff (Pro(𝑋constr

ét )) so that we
obtain an algebraic morphism

𝜌∗ ∶ 𝑋hyp
prozar → 𝑋hyp

proét .

Recall that amap𝑌 → 𝑋 is a Zariski localization if𝑌 is isomorphic (over𝑋) to a finite disjoint
union of open subschemes of 𝑋.

4.4. Let 𝑋 = Spec(𝑅) be affine scheme. We write Zaraff𝑋 for the category of affine zariski local-
izations of 𝑋. Since open immersions between qcqs schemes are of finite presentation it follows
from [STK, Tag 01ZC] that the canonical functor

Pro(Zaraff𝑋 ) → Sch∕𝑋

is fully faithful and thus we may equip Pro(Zaraff𝑋 ) with the fpqc-topology. Since the sheaf repre-
sented by a Zariski localization is constructible, we obtain a morphism of sites

𝜇∶ Pro(Zaraff𝑋 ) → Pro(𝑋constr
zar )

4.5 Lemma. Let 𝑋 be an affine scheme. Then 𝜇 induces an equivalence of∞-topoi

Shhypfpqc(Pro(Zar
aff
𝑋 )) ≃ 𝑋hyp

prozar

Proof. The proof is exactly the same as in [55, Example 7.1.7].
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4.6 Remark. Let 𝑋 be an affine scheme. Then under the equivalence of Lemma 4.5, the functor
𝜌∗ is induced by the morphism of sites

Pro(Zaraff𝑋 ) → Pro(Étaff𝑋 ) ,

that comes from the inclusion Zaraff𝑋 ↪ Étaff𝑋 . Here Ét
aff
𝑋 denotes the category of affine étale

𝑋-schemes.

4.7 Recollection. For a qcqs scheme𝑋, we writeGal(𝑋zar) for the Galois category of the Zariski
∞-topos in the sense of Definition 3.23. Note that 𝑋zar is the∞-topos of sheaves on the spectral
topological space |𝑋|. Hence by Recollection 3.29, for a profinite set 𝑆, the category of sections
Gal(𝑋zar)(𝑆) is the poset of continuous quasicompact maps 𝑓∶ 𝑆 → |𝑋| ordered by pointwise
specialization: 𝑓 ≤ 𝑔 if and only if for all 𝑠 ∊ 𝑆, we have 𝑓(𝑠) ∊ {𝑔(𝑠)}. In particular, Gal(𝑋zar)(∗)
is the specialization poset of |𝑋|, that we denote by 𝑋≤

zar.

4.8 Lemma. Let 𝑋 be a qcqs scheme. Then there is a natural equivalence of∞-topoi

𝑋hyp
prozar ⥲ Functs(Gal(𝑋zar),Cond(Ani)) .

Proof. Since𝑋zar is a spectral∞-topos, in the sense of [8, Definition 9.2.1]with profinite stratified
shape given by Gal(𝑋zar), this follows from [80, Theorem 1.1].

We are interested in the above result because it allows us to compute π0 of the condensed
homotopy type of the pro-Zariski∞-topos as the condensed classifying anima of Gal(𝑋zar). The
latter will be a quotient of the condensed set underlyingGal(𝑋zar) by an explicit equivalence rela-
tion. Furthermore, the next proposition will readily imply that this actually computes πcond0 (𝑋):

4.9 Proposition. The functor 𝜌∗ ∶ 𝑋prozar,≤0 → 𝑋proét,≤0 is fully faithful.

In order to prove Proposition 4.9, we make use of the following construction:

4.10 Construction. Let 𝑋 = Spec(𝑅) be an affine scheme. Since the inclusion Zaraff𝑋 ↪ Étaff𝑋
preserves finite limits, it admits a pro left adjoint

HenszarX ∶ Pro(Étaff𝑋 ) → Pro(Zaraff𝑋 ) .

4.11 Definition (Zariski henselization). Let 𝑋 = Spec(𝑅) be an affine scheme. Given any 𝑌 ∊
Pro(Étaff𝑋 ), we call Hens

zar
X (𝑌) the Zariski henselization of 𝑌 in 𝑋.

4.12 Lemma. Let 𝑉 ∊ Pro(Étaff𝑋 ). If 𝑉 is w-contractible, the unit morphism

𝑉 → HenszarX (𝑉)

is surjective.

Proof. Since 𝑉 is w-contractible, we can use the universal property of HenszarX (𝑉) to show that
any pro-Zariski cover of HenszarX (𝑉) has a section. This in particular shows that HenszarX (𝑉) is
w-local, see [10, Lemma 2.4.2]. Since 𝑉 → HenszarX (𝑉) is flat and the image of a flat morphism
is closed under generization [30, Lemma 14.9], it suffices to see that all closed points are in the
image.Wenowassume that im(𝑉) ⊂ HenszarX (𝑉)does not contain a closed point𝑥. Since im(𝑉) is
quasicompact, there is some quasicompact open𝐻 ⊂ HenszarX (𝑉) containing im(𝑉)while 𝑥 ∉ 𝐻.
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Since 𝐻 is quasicompact, we may find a covering by finitely many affines 𝑈𝑖 = Spec(𝑅𝑖) → 𝐻.
Since im(𝑉) ⊂ 𝐻, it follows that the induced map

∐

𝑖
𝑈𝑖 ×HenszarX (𝑉) 𝑉 → 𝑉

is surjective and thus admits a section 𝛼∶ 𝑉 →
∐

𝑖 𝑈𝑖 ×HenszarX (𝑉) 𝑉. By the universal property
of Zariski henselization, the composition

𝑉
∐

𝑖 𝑈𝑖 ×HenszarX (𝑉) 𝑉
∐

𝑖 𝑈𝑖
𝛼

factors uniquely through some 𝛼̃ ∶ HenszarX (𝑉) →
∐

𝑖 𝑈𝑖 . Since the composite

𝑉
∐

𝑖 𝑈𝑖 ×HenszarX (𝑉) 𝑉
∐

𝑖 𝑈𝑖 HenszarX (𝑉)𝛼

recovers the unit 𝑉 → HenszarX (𝑉), it follows by uniqueness that the composite

HenszarX (𝑉)
∐

𝑖 𝑈𝑖 HenszarX (𝑉)𝛼̃

is the identity. In particular the𝑈𝑖 coverHens
zar
X (𝑉) and thus𝐻 = HenszarX (𝑉), which contradicts

that 𝑥 ∉ 𝐻.

4.13 Lemma. Let 𝑋 be an affine scheme, and 𝐹 ∊ 𝑋hyp
prozar. Then 𝜌∗𝐹 is the sheafification of

Pro(Étaff𝑋 ) ∍ 𝑊 ↦ 𝐹(HenszarX (𝑊)).

Moreover, if𝑊 is w-contractible, then 𝜌∗𝐹(𝑊) = 𝐹(HenszarX (𝑊)).

Proof. The functor 𝜌∗ is given by sheafification of the left Kan extension along the map

𝜄 ∶ Pro(Zaraff𝑋 ) ↪ Pro(Étaff𝑋 ) .

Explicitly, for 𝐹 ∊ 𝑋hyp
prozar the image is given as

𝜌∗𝐹 = (𝑊 ↦ colim
𝑊→𝜄(𝑉)

𝐹(𝑉))#

for𝑉 ∊ Pro(Zaraff𝑋 ) and𝑈 ∊ Pro(Étaff𝑋 ). By the universal property ofHens
zar
X , everymap𝑊 → 𝜄(𝑉)

factors uniquely over HenszarX (𝑊) ∊ Pro(Zaraff𝑋 ), hence the colimit above reduces to

colim
𝑊→𝜄(𝑉)

𝐹(𝑉) = 𝐹(HenszarX (𝑊)).

It remains to argue why sheafification can be omitted for w-contractible 𝑊. On the basis of
w-contractible affines weakly étale over𝑋, the sheaf condition simplifies to preservation of finite
products. Since HenszarX , being a left adjoint, preserves finite coproducts and 𝐹 carries such to
finite products, the claim follows.
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Proof of Proposition 4.9. We can immediately reduce to the case where 𝑋 is affine. We want to
show that for any 𝐹 ∊ 𝑋prozar,≤0 and any 𝑈 ∊ Pro(Zaraff𝑋 ) the unit evaluated at 𝑈

𝐹(𝑈) → 𝜌∗(𝐹)(𝑈)

is an isomorphism. For this, pick a w-contractible weakly étale 𝑋-scheme𝑊 with a surjection
𝑊 ↠ 𝑈 and a further w-contractible 𝑉 with a surjection 𝑉 ↠ 𝑊 ×𝑈 𝑊. Using Lemma 4.13, it
suffices to see that the canonical map

𝐹(𝑈) → lim
(
𝐹(HenszarX (𝑊)) ⇉ 𝐹(HenszarX (𝑉))

)

is an isomorphism. This is clear if we show that

HenszarX (𝑉) ⇉ HenszarX (𝑊) → 𝑈

is the beginning of an augmented pro-Zariski hypercover. For this, first observe that since the sur-
jection𝑊 ↠ 𝑈 factors through the canonical map HenszarX (𝑊) → 𝑈, the rightmost morphism
above is surjective. Note that we have a commutative diagram

𝑉 𝑊 ×𝑈 𝑊

HenszarX (𝑉) HenszarX (𝑊) ×𝑈 HenszarX (𝑊).

Here the top horizontal morphism is surjective by definition and the right vertical morphism is
surjective by Lemma 4.12. Thus the bottom horizontal morphism is also surjective, as desired.

4.14 Remark. Note that Proposition 4.9 is only true on the level of 0-truncated sheaves, i.e.,
sheaves of sets. Full faithfulness on the level of sheaves of anima would imply an equivalence of
the condensed homotopy type and the pro-Zariski shape (relative to condensed anima). There-
fore, it would also imply that the étale homotopy type of𝑋 agreeswith the shape of the underlying
topological space of 𝑋, which is clearly false. However, it is true for everywhere strictly local
schemes 𝑋 as one has 𝑋ét = 𝑋zar by [71, Corollary 2.5].

4.2 An explicit description of πcond0

Together the results from the last section show:

4.15 Proposition. Let 𝑋 be a qcqs scheme. Then there is a natural isomorphism of condensed sets

πcond0 (𝑋) ⥲ π0(BcondGal(𝑋zar)) .

Proof. We have a commutative triangle

Cond(Ani) 𝑋hyp
prozar

𝑋hyp
proét

𝜋̃∗

𝜋∗
𝜌∗
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where 𝜋̃ is induced by the morphism of sites

Pro(Setfin) → Pro(𝑋constr
zar ); 𝑆 ↦ 𝑆 × 𝑋.

Combining Lemma 4.8 and [80, Lemma 4.3], it follows that 𝜋̃∗ has a left adjoint, that we denote
𝜋̃♯. By Proposition 4.9, it follows that πcond0 (𝑋) ≃ π0(𝜋̃♯(1)). Then by Lemma 4.8, we can use the
same argument as in Proposition 3.36 to show that 𝜋̃♯(1) ≃ BcondGal(𝑋zar), as desired.

Thus, we may quite explicitly describe πcond0 (𝑋).

4.16 Remark. The next theorem involves sets of continuous quasicompact mapsMapqc(𝑆, 𝑇)
where 𝑆 is a profinite set and 𝑇 is a spectral space. Note that these are precisely those maps
such that the preimage of a quasicompact open is clopen. It then follows that these are precisely
continuous maps in the constuctible topology, i.e.,

Mapqc(𝑆, 𝑇) = Map(𝑆, 𝑇constr) .

Said differently, the inclusion of the full subcategory of profinite sets into the category of spectral
spaces and quasicompact maps admits a right adjoint, given by sending a spectral space 𝑇 to the
underlying set of 𝑇 equipped with the constructible topology.

4.17 Theorem. Let 𝑋 be a qcqs scheme. Then for any extremally disconnected profinite set 𝑆, we
have

πcond0 (𝑋)(𝑆) = Mapqc(𝑆, |𝑋|)∕∼ ,

where 𝑓 ∼ 𝑔 if and only if there is some 𝑛 ∊ 𝐍 and quasicompact maps 𝑠1, 𝑡1, … , 𝑠𝑛, 𝑡𝑛 ∶ 𝑆 → |𝑋|
such that

𝑓 ≥ 𝑠1 ≤ 𝑡1 ≥ 𝑠2 ≤ 𝑡2 ≥ ⋯ ≥ 𝑠𝑛 ≤ 𝑡𝑛 ≥ 𝑔 ,

where 𝑎 ≤ 𝑏 if and only if 𝑎(𝑠) ∊ {𝑏(𝑠)} for all 𝑠 ∊ 𝑆. If 𝑆 = β(𝑀) for some discrete set 𝑀, we
furthermore have a canonical isomorphism

πcond0 (𝑋)(β(𝑀)) ≃ π0((𝑋≤
zar)𝑀) .

Proof. By Proposition 4.15, the first part of the theorem reduces to showing that for every ex-
tremally disconnected profinite set 𝑆, we have

π0(BcondGal(𝑋zar))(𝑆) = Mapqc(𝑆, |𝑋|)∕∼ .

This follows by the description of Gal(𝑋zar) in Recollection 4.7 noticing that two maps 𝑓, 𝑔 in
the posetMapqc(𝑆, |𝑋|) are connected if and only if there exists a finite zig-zag of specializations
as indicated in the statement. If 𝑆 = β(𝑀) for some discrete set𝑀, we have by Proposition 2.22

Mapqc(β(𝑀), |𝑋|) ≃ Gal(𝑋zar)(β(𝑀))

≃
∏

𝑀
Gal(𝑋zar)(∗) ≃

∏

𝑀
𝑋≤
zar .

4.18Construction. Let𝑋 be a qcqs scheme. The image of the condensed connected components
πcond0 (𝑋) under the left adjoint (−)∧disc ∶ Cond(Ani) → Pro(Ani<∞) coincides with the profinite
set of connected components 𝜋0(𝑋) ∊ Pro(Setfin) ⊂ Pro(Ani) after 0-truncation. Indeed, by
Lemma 3.14, the above is given by the connected components ofΠét

<∞(𝑋). Thus, the 0-truncation
of the unit Πcond

∞ (𝑋) → Πét
<∞(𝑋) ∊ Cond(Ani) gives a natural map of condensed sets

𝜑∶ πcond0 (𝑋) → π0(𝑋).

33



Theorem 4.17 shows that πcond0 (𝑋) gives the expected answer in some cases:

4.19 Corollary. Let 𝑋 be a qcqs scheme with finitely many irreducible components. Then the
natural map of condensed sets

𝜑∶ πcond0 (𝑋) → π0(𝑋)

is an isomorphism.

Proof. It suffices to check that 𝜑 is an isomorphism after evaluating at β(𝑀) for any discrete set
𝑀. By Theorem 4.17, we need to see that the canonical map

π0((𝑋≤
zar)𝑀) → π0(𝑋)𝑀

that sends a function 𝑀 → |𝑋| to the composite with |𝑋| → π0(𝑋) is an isomorphism (note
that this is not immediate, since in general π0 does not commute with infinite products). It
is surjective by surjectivity of |𝑋| → π0(𝑋). For injectivity, suppose that we have two maps
𝑓, 𝑔∶ 𝑀 → |𝑋| that agree after composing with π0. If the number of irreducible components of
𝑋 is 𝑛, it follows that we may connect any two points 𝑥, 𝑦 ∊ 𝑋 in the same connected component
with a zig-zag of specializations involving atmost 2𝑛+1 other points. Thuswemay also connect𝑓
and 𝑔with a zig-zag involving 2𝑛+1 othermaps and thus [𝑓] = [𝑔] inπ0((𝑋≤

zar)𝑀), as desired.

4.20 Remark. For an alternative proof of Corollary 4.19, see [56, Proposition 2.2.25].

4.21 Recollection [24, Chapter 0, §2.3]. A spectral space 𝑇 is valuative if, for each 𝑡 ∊ 𝑇, the set
of generizations of 𝑡 is totally ordered under the generization relation. Every point 𝑡 of a valuative
space 𝑇 has a unique maximal generization, denoted 𝑡max .

The separated quotient of a valuative spectral space 𝑇 is the quotient 𝑇sep ≔ 𝑇∕∼ by the
relation 𝑠 ∼ 𝑡 if 𝑠max ∼ 𝑡max . By [24, Chapter 0, Corollary 2.3.18], 𝑇sep is a compact Hausdorff
space.

For the next result, recall the Galois category of a spectral space from Notation 3.28 and Rec-
ollection 3.29.

4.22 Corollary. Let 𝑇 be a valuative spectral space. Then the natural map

π0(Gal(𝑇zar)) → 𝑇sep

is an isomorphism of condensed sets.

Proof. It again suffices to check this after evaluating at any β(𝑀). So let 𝛼∶ β(𝑀) → 𝑇sep be any
continuousmap. Since the quotient map 𝜋∶ 𝑇 → 𝑇sep is surjective, wemay pick amap 𝑎∶ 𝑀 →
𝑇 lifting𝛼|𝑀 . Using Proposition 2.22 as in Theorem 4.17, 𝑎 extends to a quasicompact continuous
map 𝑎̄ ∶ β(𝑀) → 𝑇 and by construction we have 𝜋◦𝑎̄|𝑀 = 𝛼|𝑀 . By the universal property of
Čech–Stone compactification, we thus get 𝜋◦𝑎̄ = 𝛼, proving surjectivity. For injectivity, suppose
that we are given twomaps 𝑓, 𝑔∶ 𝑀 → 𝑇 such that the composites with𝜋 agree. By the valuative
property, it follows that for any𝑚 ∊ 𝑀, 𝑓(𝑚) and 𝑔(𝑚) specialize to the same maximal element
ℎ(𝑚). Thus we get a zig-zag

𝑓 ≤ ℎ ≥ 𝑔

so that [𝑓] = [𝑔] in π0(Gal(𝑇zar))(β(𝑀)), proving injectivity.
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4.23 Example. Corollary 4.22 shows that even if 𝑋 is a connected scheme, πcond0 (𝑋) can be a
nontrivial condensed set. Concretely, we may take 𝑇 to be the underlying topological space of
the adic unit disk. Then 𝑇 is a connected spectral topological space, so there exists a ring 𝑅 and
a homeomorphism 𝑇 ≃ |Spec(𝑅)|. Thus Spec(𝑅) is connected but πcond0 (Spec(𝑅)) = 𝑇sep is a
nontrivial compact Hausdorff space. In fact, this space is homeomorphic to the underlying space
of the corresponding Berkovich disk (cf. [44, Remark 8.3.2]).

Theorem 4.17 can also be used to show that for a general qcqs scheme 𝑋, the condensed set
πcond0 (𝑋) can be quite exotic (in particular, πcond0 (𝑋) is not generally quasiseparated in the sense
of Recollection 7.7). This is achieved in the following example.

4.24 Example (schematic Warsaw circle). Let 𝑋 be a qcqs scheme with the property that any
two points may be connected by a zig-zag of specializations but such that the minimal length of
such a chain is not bounded by any natural number. Then we have

πcond0 (𝑋)(∗) ≃ ∗ .

However, for any function 𝑓∶ 𝐍 → |𝑋| such that the minimal length of a zig-zag connecting
𝑓(𝑛) and 𝑓(0) is at least 𝑛, the function 𝑓 and the constant function at 𝑓(0) yield different
elements in πcond0 (𝑋)(β(𝐍)). Thus, πcond0 (𝑋) is a nontrivial condensed set whose underlying set
is the point and therefore not quasiseparated. Indeed, if it was quasiseparated it would be qcqs
and thus representable by a compact Hausdorff space.

Let us give a concrete example of a scheme satisfying these properties. Fix an algebraically
closed field 𝑘 = 𝑘̄ and write ∗ = Spec(𝑘). Let 𝑋 ∊ ∗proét be a scheme such that π0(𝑋) = 𝐍 ∪∞,
i.e., the converging sequence of points together with its limit. Each connected component of𝑋 is
just a copy of ∗. Take two copies 𝑋+

1 = 𝑋+
2 = 𝐀1

𝑘 ×𝗉𝗍𝑋 of a scheme that, intuitively, is a sequence
of affine lines converging to another affine line. Fix two points, say 0, 1, on each copy of 𝐀1

𝑘 and
glue 𝑋+

1 and 𝑋+
2 to obtain a zigzag of 𝐀1

𝑘’s intersecting at 0’s and 1’s and converging to a copy of
𝐀1
𝑘. Picture:

Let us denote this scheme simply by 𝑋+. To formalize this gluing procedure, one notes that we
are gluing affine schemes along closed subschemes, and so the pushout exists (and is an affine
scheme again) by [72, Theorem 3.4].

Now, this scheme satisfies the condition of having specialization-distances between points
growing arbitrarily but it still needs a small correction: the points on the limit𝐀1

𝑘 are not joinable
by a specialization sequence with the points on the zigzag. To amend it, add a further copy of
𝐀1
𝑘 joining an arbitrarily chosen pair of 𝑘-points of the the leftmost line of the zigzag with the

limit line of 𝑋+. Let us denote by 𝑋++ this schematic ’Warsaw circle’. One can check that 𝑋++

satisfies the desired properties.
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4.3 Computation: Πcond
∞ of rings of continuous functions

Let 𝑇 be a compact Hausdorff space.We conclude this section by using Theorem 4.17 to compute
the condensed homotopy type of the ring of continuous functions C(𝑇, 𝐂); we show that it is
0-truncated, and coincides with the condensed set represented by 𝑇. We accomplish this by
proving a more general result. To state it, recall that the ring C(𝑇, 𝐂) has the property that every
prime ideal is contained in a unique maximal ideal (see Theorem A.24). Moreover, [67, Chapitre
VII, Proposition 4] shows that the local rings of C(𝑇, 𝐂) at maximal ideals are strictly henselian.
We are able to compute the condensed homotopy types of rings satisfying these two properties.

To state our results, we first introduce some terminology.

4.25 Notation. Given a ring 𝑅, we writeMSpec(𝑅) ⊂ |Spec(𝑅)| for the subset of maximal ideals,
endowed with the subspace topology.

4.26 Recollection (see Appendix A). A ring 𝑅 is a pm-ring if every prime ideal of 𝑅 is contained
in a unique maximal ideal. In this case, the spaceMSpec(𝑅) is compact Hausdorff.

First, we identify πcond0 of an arbitrary pm-ring.

4.27 Proposition. Let 𝑅 be a pm-ring. Then there is a natural isomorphism of condensed sets

πcond0 (Spec(𝑅)) ⥲ MSpec(𝑅) .

This isomorphism is constructed in the course of the proof.

Proof. By TheoremA.9, themap of topological spaces |Spec(𝑅)| → MSpec(𝑅) that sends a prime
ideal 𝔭 to the unique maximal ideal containing 𝔭 is a continuous retraction of the inclusion.
This retraction is also continuous for the constructible topology and therefore defines a map of
condensed sets

MapTop(−, |Spec(𝑅)|
cons) → MSpec(𝑅) .

Furthermore it clearly respects the equivalence relation described in Theorem 4.17 and therefore
induces a map

πcond0 (Spec(𝑅)) → MSpec(𝑅) .

To check that this map is an isomorphism, it suffices to check this after evaluating at β(𝑀) for
any set𝑀. Using the explicit description given in Theorem 4.17 and the fact thatMSpec(𝑅) is
compact Hausdorff (Corollary A.10), this is immediate.

Under stronger hypotheses, we compute the whole condensed homotopy type:

4.28 Theorem. Let 𝑅 be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then Πcond

∞ (Spec(𝑅)) is 0-truncated; hence there is a natural equivalence of
condensed anima

Πcond
∞ (Spec(𝑅)) ⥲ MSpec(𝑅) .

To show that Πcond
∞ (Spec(𝑅)) is 0-truncated, we use the description of the condensed homotopy

type via exodromy. We first prove some preparatory results about classifying anima of infinite
products.
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4.29 Lemma. Let 𝐼 be a set and let (𝒞𝑖)𝑖∊𝐼 be∞-categories. Assume that for each 𝑖 ∊ 𝐼, there exists
a left adjoint functor 𝜆𝑖 ∶ 𝐴𝑖 → 𝒞𝑖 where 𝐴𝑖 is an anima. Then all of the maps in the commutative
square

B(
∏

𝑖∊𝐼 𝐴𝑖)
∏

𝑖∊𝐼 B𝐴𝑖

B(
∏

𝑖∊𝐼 𝒞𝑖)
∏

𝑖∊𝐼 B𝒞𝑖 .

B(
∏

𝑖∊𝐼 𝜆𝑖)
∏

𝑖∊𝐼 B𝜆𝑖

are equivalences of anima.

Proof. First observe that since each 𝜆𝑖 is a left adjoint, the induced functor on products
∏

𝑖∊𝐼 𝜆𝑖 ∶
∏

𝑖∊𝐼 𝐴𝑖 →
∏

𝑖∊𝐼 𝒞𝑖

is also a left adjoint. Since each 𝐴𝑖 is an anima, the top horizontal map is an equivalence. Since∏
𝑖∊𝐼 𝜆𝑖 and each 𝜆𝑖 is a left adjoint and the functor B∶ Cat∞ → Ani sends left adjoints to

equivalences [15, Corollary 2.11], the vertical maps are also equivalences. Thus, by the 2-of-3
property, the bottom horizontal map is an equivalence, as desired.

4.30 Example. Let 𝐼 be a set and let (𝒞𝑖)𝑖∊𝐼 be∞-categories. Assume that for each 𝑖 ∊ 𝐼, each
connected component of the ∞-category 𝒞𝑖 admits an initial object. Then the hypotheses of
Lemma 4.29 are satisfied where each 𝐴𝑖 is the set of initial objects of connected components of
𝒞𝑖 and 𝜆𝑖 is the inclusion. In particular,

B(
∏

𝑖∊𝐼 𝒞𝑖) ≃
∏

𝑖∊𝐼 B𝒞𝑖

is 0-truncated.

We also need the following criterion for detecting when a condensed anima is 0-truncated:

4.31 Lemma. Let 𝑛 ≥ 0 be an integer. Then a condensed anima 𝐴 is 𝑛-truncated if and only if for
each set𝑀, the anima 𝐴(β(𝑀)) is 𝑛-truncated.

Proof. Since every extremally disconnected profinite set is a retract of the Čech–Stone com-
pactification of a set, this follows from the fact that every retract of an 𝑛-truncated anima is
𝑛-truncated.

Proof of Theorem 4.28. Note that, in light of Proposition 4.27, the final statement follows from
the claim that Πcond

∞ (Spec(𝑅)) is 0-truncated; so we just show this. Let us write 𝑋 = Spec(𝑅).
By Lemma 4.31, it suffices to show that for every set𝑀, the classifying anima of the category
Gal(𝑋)(β(𝑀)) is 0-truncated. Together, Recollection 3.31 and Proposition 2.22 show that

Gal(𝑋)(β(𝑀)) ≃
∏

𝑚∊𝑀
Gal(𝑋)({𝑚}) ≃

∏

𝑚∊𝑀
Pt(𝑋ét) .

So by Example 4.30, it suffices to show that every connected component of Pt(𝑋ét) has an initial
object. This last statement is immediate from the assumption that 𝑅 is a pm-ring and all local
rings at maximal ideals are strictly henselian.

We now derive some consequences of Theorem 4.28. The first is a computation of the étale
homotopy type of these pm-rings, which appears to be new.
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4.32 Corollary. Let 𝑅 be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then there is a canonical equivalence of proanima

Πét
<∞(Spec(𝑅)) ⥲ Π<∞(MSpec(𝑅)) .

Here, Π<∞(MSpec(𝑅)) denotes the shape of the compact Hausdorff space MSpec(𝑅). See Nota-
tion 2.24.

Proof. We apply the functor (−)∧disc ∶ Cond(Ani) → Pro(Ani<∞) to the equivalence in Theo-
rem 4.28. To conclude, note that by Lemma 3.14, we have

Πcond
∞ (Spec(𝑅))∧disc ≃ Πét

<∞(Spec(𝑅))

and by Lemma 2.26 we have

MSpec(𝑅)∧disc ≃ Π<∞(MSpec(𝑅)) .

Finally, we turn to the special case of rings of continuous functions.

4.33 Corollary. Let𝑇 be a topological space and letCb(𝑇, 𝐂) denote the ring of bounded continuous
functions to 𝐂. Then there are natural equivalences

Πcond
∞ (Spec(Cb(𝑇, 𝐂))) ⥲ β(𝑇)

and
Πét
<∞(Spec(Cb(𝑇, 𝐂))) ⥲ Π<∞(β(𝑇)) .

4.34. Note that if 𝑇 is compact Hausdorff, then β(𝑇) = 𝑇 and Cb(𝑇, 𝐂) = C(𝑇, 𝐂).

Proof. By the universal property of Čech–Stone compactification, the natural map 𝑇 → β(𝑇)
induces an isomorphism of rings

C(β(𝑇), 𝐂) ⥲ Cb(𝑇, 𝐂) .

By Theorem A.24, the ring C(β(𝑇), 𝐂) is a pm-ring and by Theorem A.32 there is a natural
homeomorphism β(𝑇) ⥲ MSpec(C(β(𝑇), 𝐂)). Furthermore, [67, Chapitre VII, Proposition 4]
shows that the local rings of C(β(𝑇), 𝐂) at maximal ideals are strictly henselian. Thus the claim
follows from Theorem 4.28 and Corollary 4.32 applied to 𝑅 = C(β(𝑇), 𝐂).

4.35 Remark. Let 𝑇 be a compact Hausdorff space that admits a CW structure and 𝑡 ∊ 𝑇. Since
𝑇 admits a CW structure, the shape Π∞(𝑇) coincides with the underlying anima of 𝑇. Hence
Corollary 4.33 shows that, up to protruncation, the étale homotopy type of Spec(C(𝑇, 𝐂)) co-
incides with the underlying anima of 𝑇. In particular, the SGA3 étale fundamental group of
Spec(C(𝑇, 𝐂)) at the maximal ideal of functions vanishing at 𝑡 coincides with the usual funda-
mental group π1(𝑇, 𝑡).

5 Fiber sequences
Let 𝑘 be a field with separable closure 𝑘̄ ⊃ 𝑘, and let 𝑋 be a qcqs 𝑘-scheme. Write 𝑋𝑘̄ for the
basechange of 𝑋 to 𝑘̄. Then the naturally null sequence of étale homotopy types

(5.1) Πét
<∞(𝑋𝑘̄) Πét

<∞(𝑋) BGal𝑘
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is a fiber sequence, see [36, Theorem 0.2]. The existence of this fiber sequence implies the usual
fundamental exact sequence for étale fundamental groups [STK, Tag 0BTX; SGA 1, Exposé IX,
Théorème 6.1].

The first goal of this section, accomplished in §5.1, is to prove the analogue of the funda-
mental fiber sequence (5.1) for the condensed homotopy type. The second goal of this section,
accomplished in §5.2, is to show that given a smooth proper morphism of schemes 𝑋 → 𝑆, up
to suitable completion, the homotopy-theoretic fiber of the induced map Πcond

∞ (𝑋) → Πcond
∞ (𝑆)

agrees with the condensed homotopy type of the scheme-theoretic fiber. See Theorem 5.12.

5.1 The fundamental fiber sequence for the condensed homotopy type
Using the description of Πcond

∞ (𝑋) as the condensed classifying anima BcondGal(𝑋), the same
methods as in [36] allow us to prove the fundamental fiber sequence for the condensed homotopy
type. The key observation is that even though Bcond does not preserve pullbacks, it preserves
pullbacks along morphisms between condensed anima. Let us now explain this point.

5.2 Recollection. Let𝒞 be an∞-categorywith pullbacks and𝒟 ⊂ 𝒞 a full subcategory such that
the inclusion admits a left adjoint 𝐿∶ 𝒞 → 𝒟. We say that the localization 𝐿 is locally cartesian
if for any cospan 𝑈 → 𝑊 ← 𝑉 in 𝒞 with 𝑈,𝑊 ∊ 𝒟, the natural map

𝐿(𝑈 ×𝑊 𝑉) → 𝑈 ×𝑊 𝐿(𝑉)

is an equivalence. See [26, §1.2; 43, §3.2].

5.3. Importantly, the localization B∶ Cat∞ → Ani is locally cartesian; see [36, Example 3.4].

5.4 Corollary. Let 𝒞 be an∞-category with finite limits and let 𝐿∶ 𝒞 → 𝒟 be a locally cartesian
localization that also perserves finite products. Then the localization 𝐿cond ∶ Cond(𝒞) → Cond(𝒟)
is locally cartesian.

Proof. By definition, the functor

𝐿cond ∶ Fun×(Extrop, 𝒞) → Fun×(Extrop, 𝒟)

is given by pointwise application of 𝐿∶ 𝒞 → 𝒟. Since finite limits in Cond(𝒞) and Cond(𝒟) are
computed pointwise, the claim follows from the assumption that the localization 𝐿 is locally
cartesian.

5.5 Example. The localization Bcond ∶ Cond(Cat∞) → Cond(Ani) is locally cartesian.

5.6 Corollary. Let 𝑓∶ 𝑋 → 𝑆 be a morphism between qcqs schemes, and let 𝑠 → 𝑆 be a geometric
point of 𝑆. If dim(𝑆) = 0, then the naturally null sequence

Πcond
∞ (𝑋𝑠) Πcond

∞ (𝑋) Πcond
∞ (𝑆)

is a fiber sequence in the∞-categoryCond(Ani). As a consequence, given a geometric point 𝑥̄ → 𝑋𝑠,
the induced sequence of pointed condensed sets

1 πcond1 (𝑋𝑠, 𝑥̄) πcond1 (𝑋, 𝑥̄) πcond1 (𝑆, 𝑠) πcond0 (𝑋𝑠) πcond0 (𝑋) πcond0 (𝑆)

is exact.
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Proof. For thefirst claim, note that by [36, Corollary 2.4] and the fact that the functorPro(Cat∞) →
Cond(Cat∞) preserves limits, the natural square

Gal(𝑋𝑠) Gal(𝑋)

Gal(𝑠) Gal(𝑆)

is a pullback square in Cond(Cat∞). Moreover, since 𝑠 is a geometric point, Gal(𝑠) ≃ ∗. Since
dim(𝑆) = 0, by Corollary 3.37 the condensed ∞-category Gal(𝑆) is a 1-truncated condensed
anima. The claim now follows from Proposition 3.36 and the fact that the localization Bcond is
locally cartesian.

To conclude, note that sinceΠcond
∞ (𝑆) ≃ Gal(𝑆) is 1-truncated, the second claim follows from

the first by taking homotopy condensed sets.

5.7 Corollary. Let 𝑘 be a fieldwith separable closure 𝑘̄, let𝑋 be a qcqs 𝑘-scheme, and fix a geometric
point 𝑥̄ → 𝑋𝑘̄ . If πcond0 (𝑋𝑘̄) = 1, then the sequence of condensed groups

1 πcond1 (𝑋𝑘̄, 𝑥̄) πcond1 (𝑋, 𝑥̄) Gal𝑘 1

is exact.

5.8 Remark. By Corollary 4.19, the hypotheses of Corollary 5.7 are satisfied if𝑋 is geometrically
connected and 𝑋𝑘̄ has finitely many irreducible components.

As an application of the fundamental fiber sequence and Corollary 4.33, we compute of the
condensed homotopy type of rings of continuous functions to 𝐑:

5.9 Corollary. Let 𝑇 be a compact Hausdorff space. Then there is a natural equivalence of con-
densed anima

Πcond
∞ (Spec(C(𝑇,𝐑))) ≃ 𝑇 × BGal𝐑 .

Proof. As explained in Lemma A.26, the natural ring homomorphism C(𝑇,𝐑) ⊗𝐑 𝐂 → C(𝑇, 𝐂)
is an isomorphism. Hence by the fundamental fiber sequence

Πcond
∞ (Spec(C(𝑇, 𝐂))) → Πcond

∞ (Spec(C(𝑇,𝐑))) → BGal𝐑

of Corollary 5.6, we just have to show that action of Gal𝐑 on Πcond
∞ (Spec(C(𝑇, 𝐂))) is trivial. By

Theorem 4.28, we have natural identifications

Πcond
∞ (Spec(C(𝑇, 𝐂))) ≃ MSpec(C(𝑇, 𝐂)) ≃ 𝑇 .

Thus it suffices to show that map on maximal spectra

MSpec(C(𝑇, 𝐂)) → MSpec(C(𝑇, 𝐂))

induced by complex conjugation is the identity. To see this, note that by Theorem A.32, each
maximal ideal is given by all functions 𝑇 → 𝐂 that vanish at some fixed 𝑡 ∊ 𝑇, and a function
vanishes at a point if and only if its conjugate does.
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5.2 Geometric and homotopy-theoretic fibers
Let 𝑓∶ 𝑋 → 𝑆 be a smooth and proper morphism of schemes. The goal of this subsection is
is to show that, up to suitable completion, the homotopy-theoretic fiber of the induced map
Πcond
∞ (𝑓)∶ Πcond

∞ (𝑋) → Πcond
∞ (𝑆) agrees with the condensed homotopy type of the scheme-

theoretic fiber.

5.10 Notation. For a morphism of schemes 𝑓∶ 𝑋 → 𝑆 and a geometric point 𝑠 → 𝑆, we denote
by

𝑋(𝑠) ≔ 𝑋 ×𝑆 𝑆(𝑠)
theMilnor ball of 𝑓 at 𝑠 . Here 𝑆(𝑠) denotes the strict localization at 𝑠.

5.11 Recollection (Σ-completion). Let Σ be a nonempty set of prime numbers.

(1) We writeAniΣ ⊂ Aniπ for the full subcategory spanned by those π-finite anima all of whose
homotopy groups are Σ-groups (i.e., their order is a product of elements of Σ).

(2) The inclusion Pro(AniΣ) ↪ Pro(Aniπ) admits a left adjoint (−)∧Σ that we refer to as Σ-com-
pletion.

(3) We also write (−)∧Σ ∶ Cond(Ani) → Pro(AniΣ) for the left adjoint of the inclusion

Pro(AniΣ) ↪ Pro(Aniπ) ↪ Cond(Ani) .

As a consequence of the exodromy description of the condensed homotopy type, we can
apply a profinite version of Quillen’s Theorem B, see §C.2, to get the following:

5.12 Theorem. Let 𝑓∶ 𝑋 → 𝑆 be a smooth and proper morphism between qcqs schemes and let
𝑠 → 𝑆 be a geometric point. Let Σ be a set of primes invertible on 𝑆. Then the induced map

Πcond
∞ (𝑋𝑠) → fib𝑠(Πcond

∞ (𝑓))

becomes an equivalence after Σ-completion.

Proof. Wewant to apply Theorem C.7 to the functorGal(𝑓)∶ Gal(𝑋) → Gal(𝑆) induced by 𝑓. To
verify that the assumptions of TheoremC.7 are satisfied,we need to see that for any specialization
𝜂∶ 𝑡′ → 𝑡 in 𝑆, the induced map

(5.13) Bcond(Gal(𝑋)𝑡∕) → Bcond(Gal(𝑋)𝑡′∕)

becomes an equivalence after Σ-completion.
Recall that by [8, Corollary 12.4.5], we have a natural equivalence of underlying∞-categories

(5.14) Gal(𝑆(𝑡)) ⥲ Gal(𝑆)𝑡∕ .

Using Observation 6.5 below, one can show that this equivalence refines to an equivalence
of condensed ∞-categories, see [81, Proposition 7.3.3.7] for more details. Furthermore, [36,
Proposition 2.4] implies, that the natural functor

Gal(𝑋(𝑡)) → Gal(𝑋)𝑡∕ ,
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induced by the equivalence (5.14), is an equivalence of condensed∞-categories as well. Thus
by Lemma 3.14, the Σ-completion of the map (5.13) identifies with the specialization map

Π̂ét
∞(𝑋(𝑡))∧Σ → Π̂ét

∞(𝑋(𝑡′))∧Σ .

By [35, Proposition 2.49], this specialization map is an equivalence. Thus, Theorem C.7 implies
that the natural map Πcond

∞ (𝑋(𝑠)) → fib𝑠(Πcond
∞ (𝑓)) becomes an equivalence after Σ-completion.

Finally, note that by Lemma 3.14 and [35, Corollary 2.39], the natural map

Πcond
∞ (𝑋𝑠) → Πcond

∞ (𝑋(𝑠))

becomes an equivalence after Σ-completion.

5.15 Remark. In the setting of Theorem 5.12, the canonical mapΠcond
∞ (𝑋𝑠) → fib𝑠(Πcond

∞ (𝑓)) is
not generally an equivalence before Σ-completion. The reason why this fails is that the proper
and smooth base change theorems do not hold for arbitrary proétale sheaves; they only hold for
constructible étale sheaves.

5.16 Remark. Theorem 5.12 is an analogue of Friedlander’s result [22, Theorem 3.7]. Since we
do not have to require that the base 𝑆 be normal, at the cost of working with a more complicated
homotopy type, our result holds in a more general setup. However, since the Σ-completion
functor does not preserve fiber sequences, it is also not immediate how to recover Friedlander’s
result from ours.

6 Integral Descent
The goal of this section is to prove that the condensed homotopy type satisfies integral hyperde-
scent. Let us start by formulating what we mean by this more precisely.

6.1 Definition. Let 𝑋 be a scheme and 𝒞 an∞-category.

(1) We call an augmented simplical object 𝑋∙ → 𝑋 an integral hypercover if for each 𝑛 ≥ 0, the
morphism 𝑋𝑛 → 𝑋 is integral and 𝑋0 → 𝑋 and 𝑋𝑛 → (cosk𝑛−1(𝑋∙))𝑛 are surjective.

(2) We call a functor 𝐹∶ Schqcqs → 𝒞 a hypercomplete integral cosheaf if 𝐹 sends integral hyper-
covers to colimit diagrams.

Themain goal of §6.1 is to show thatΠcond
∞ (−) is a hypercomplete integral cosheaf, which we

achieve in Corollary 6.16. In fact, our methods will show that already Gal(−) is a hypercomplete
integral cosheaf of condensed categories. In §6.2, we use some of the results in this section to
characterize those morphisms of schemes, for which the étale∞-topos is compatible with base
change; this included integral morphisms.

6.1 Integral morphisms and right fibrations
In this subsection, we show that for an integral morphism of schemes, the induced functor on
Galois categories is a right fibration of condensed categories. We begin by recalling the notion
of a right fibration of condensed∞-categories:
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6.2 Definition. We say that a functor of condensed∞-categories 𝑓∶ 𝒞 → 𝒟 is a right fibration
if and only if the commutative square

Funcond([1], 𝒞) Funcond([1],𝒟)

𝒞 𝒟

𝑓◦−

ev1 ev1

𝑓

is a cartesian square in Cond(Cat∞).

6.3 Remark. Definition 6.2 is a special case of the notion of a right fibration of simplicial
objects in a general∞-topos ℬ, as introduced in [57, Definition 4.1.1]. In particular it follows
from the discussion in loc. cit. that right fibrations in Fun(𝚫op, Cond(Ani)) are the right class
in an orthogonal factorization system. The left class consists of the finalmaps, i.e., the smallest
saturated class which contains allmaps of the form {𝑛}×𝑆 ↪ [𝑛]×𝑆 for 𝑛 ∊ 𝐍 and 𝑆 ∊ Pro(Setfin).
See [57, Lemma 4.1.2].

6.4 Remark. A functor 𝑓∶ 𝒞 → 𝒟 of condensed∞-categories is a right fibration if and only
if for every profinite set 𝑆, the functor 𝑓(𝑆)∶ 𝒞(𝑆) → 𝒟(𝑆) is a right fibration of∞-categories.
Indeed, the square in Definition 6.2 is cartesian if and only if this is true after evaluation at
every profinite set 𝑆. Under the equivalence Funcond([1], 𝒞)(𝑆) ≃ Fun([1], 𝒞(𝑆)), the claim then
follows by the characterization of right fibrations via a corresponding cartesian square, see [14,
Proposition 3.4.5].

In the cases we care about, being a right fibration can often be detected on the level of
underlying categories, which we deduce from the following observation.

6.5 Observation. Recall from [SAG, Theorem E.3.1.6] that the functor

lim∶ Pro(Aniπ) → Ani

is conservative. It follows that the functor lim∗ ∶ Cat(Pro(Aniπ)) → Cat∞ given by postcompo-
sition with lim is also conservative.

6.6 Lemma. Let 𝑓∶ 𝒞 → 𝒟 be a functor in Cat(Pro(Aniπ)) considered as a functor of condensed
∞-categories. If the underlying functor of∞-categories is a right fibration, then 𝑓 is a right fibration
of condensed∞-categories.

Proof. By definition, 𝑓 is a right fibration if and only if the induced map

(6.7) Funcond([1], 𝒞) → Funcond([1],𝒟) ×𝒟 𝒞

is an equivalence of condensed∞-categories. Since 𝒞 and 𝒟 are in Cat(Pro(Aniπ)), it follows
that Funcond([1], 𝒞) and Funcond([1],𝒟) are also in Cat(Pro(Aniπ)). Thus, by Observation 6.5,
the comparison map (6.7) is an equivalence if and only if it an equivalence on underlying∞-
categories. Since taking underlying ∞-categories commutes with pullbacks, this proves the
claim.

By Recollection 3.31, we immediately deduce the following.
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6.8 Corollary. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of qcqs schemes. Then the induced functor

Gal(𝑓)∶Gal(𝑋) → Gal(𝑌)

is a right fibration of condensed categories if and only if this is true on the underlying categories.

6.9 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be an integral morphism of qcqs schemes. Then the induced
functor

Gal(𝑓)∶ Gal(𝑋) → Gal(𝑌)
is a right fibration of condensed categories.

Proof. By Corollary 6.8, it suffices to check this on underlying categories. The statement about
underlying categories appears in [8, Proposition 14.1.6]; for the convenience of the reader, we
give a quick proof here.

Throughout the proof, we simply write Gal(−) for the underlying category as well. By [STK,
Tag 09YZ], any integral morphism 𝑓∶ 𝑋 → 𝑌 with 𝑌 qcqs can be written as 𝑓 = lim𝑖 𝑓𝑖 for
some cofiltered system of finitemorphisms 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌. Since right fibrations are stable under
limits, by the continuity of étale∞-topoi [SGA 4ii, Éxpose VII, Lemma 5.6; 16, Proposition 3.10],
we may assume that 𝑓 is finite. Since Gal(𝑋) and Gal(𝑌) are 1-categories, by [Ker, Tag 015H] it
suffices to show that any lifting problem of the form

{1} Gal(𝑋)

[1] Gal(𝑌).

Gal(𝑓)

𝑠

∃!?

has a unique solution. Writing 𝑦̄ for the source of the map 𝑠, this diagram factors as

{1} Gal(𝑌)𝑦̄∕ ×Gal(𝑌) Gal(𝑋) Gal(𝑋)

[1] Gal(𝑌)𝑦̄∕ Gal(𝑌) ,

⌟
Gal(𝑓)∃!?

𝑠

and it suffices to show that this induced lifting problem has a unique solution.
By [8, Corollary 12.4.5] and [36, Corollary 2.4], we can identify

Gal(𝑌)𝑦̄∕ ≃ Gal(𝑌(𝑦̄)) and Gal(𝑋) ×Gal(𝑌) Gal(𝑌(𝑦̄)) ≃ Gal(𝑋 ×𝑌 𝑌(𝑦̄)) .

Moreover, since 𝑓∶ 𝑋 → 𝑌 is finite, by [STK, Tag 04GH] we have a coproduct decomposition
𝑋 ×𝑌 𝑌(𝑦̄) =

∐
𝑥̄𝑖∊𝑓−1(𝑦̄)

𝑋(𝑥̄𝑖). Now the map

{1} → Gal(𝑌(𝑦̄)) ×Gal(𝑌) Gal(𝑋) ≃
∐

𝑖
Gal(𝑋(𝑥̄𝑖))

factors through Gal(𝑋(𝑥̄𝑖0 )) for some 𝑖0. Hence, writing 𝑥̄ ≔ 𝑥̄𝑖0 , we finally arrive at a lifting
problem of the form

{1} Gal(𝑋(𝑥̄)) Gal(𝑋)

[1] Gal(𝑌(𝑦̄)) Gal(𝑌).

Gal(𝑓)

𝑠

∃!?
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Here, existence and uniqueness of a lift is clear. Let 𝑦̄′ be the target of the map 𝑠, determined
by {1} → Gal(𝑋(𝑥̄)). Note that 𝑥̄ is the initial object of Gal(𝑋(𝑥̄)) ≃ Gal(𝑋)𝑥̄∕, and also the only
object lifting 𝑦̄. So if there exists a lift, it has to be the unique map from 𝑥̄ → 𝑥̄′ for 𝑥̄′ the lift of
𝑦̄′. Since 𝑦̄ is the initial object of Gal(𝑌(𝑦̄)) ≃ Gal(𝑌)𝑦̄∕, it is clear that 𝑥̄ → 𝑥̄′ actually lifts the
map 𝑠 ∶ 𝑦̄ → 𝑦̄′ we started with.

6.10 Corollary (Künneth formula for integral morphisms). Let 𝑋 → 𝑌 be an integral morphism
of qcqs schemes. Then for any qcqs scheme 𝑌′ and morphism 𝑌′ → 𝑌 the natural functor

Gal(𝑋 ×𝑌 𝑌′) → Gal(𝑋) ×Gal(𝑌) Gal(𝑌′)

is an equivalence.

Proof. As integral morphisms and right fibrations are stable under pullbacks, by Proposition 6.9
both functors

Gal(pr1)∶ Gal(𝑋 ×𝑌 𝑌′) → Gal(𝑌′) and pr1 ∶ Gal(𝑋) ×Gal(𝑌) Gal(𝑌
′) → Gal(𝑌′)

are right fibrations. Therefore, by [Ker, Tag 01VE] it suffices to see that the natural functor

Gal(𝑋 ×𝑌 𝑌′) → Gal(𝑋) ×Gal(𝑌) Gal(𝑌′)

becomes an equivalence after taking fibers over any 𝑦̄′ ∊ Gal(𝑌′). This holds by [35, Corollary 2.4].

6.11 Lemma. Let 𝑓∶ 𝒞 → 𝒟 be a morphism in Cat(Pro(Aniπ)). Then 𝑓 is surjective as a functor
of condensed∞-categories (i.e., for all 𝑆 ∊ Extr, the functor 𝒞(𝑆) → 𝒟(𝑆) is surjective) if and only
if the induced functor on underlying∞-categories 𝑓(∗)∶ 𝒞(∗) → 𝒟(∗) is surjective.

6.12 Observation. The inclusion Cond(Ani) → Cond(Cat∞) also admits a right adjoint. We
denote this right adjoint by (−)≃.

Proof of Lemma 6.11. First, by definition, if 𝑓 is a surjective functor of condensed∞-categories,
then 𝑓(∗)∶ 𝒞(∗) → 𝒟(∗) is surjective. Conversely, if 𝑓(∗)∶ 𝒞(∗) → 𝒟(∗) is surjective, then it fol-
lows from [SAG, Corollary E.4.6.3] that the induced map 𝒞≃ → 𝒟≃ is an effective epimorphism
in Pro(Aniπ) ⊂ Cond(Ani). Now let 𝑆 ∊ Extr. Since any map 𝑆 → 𝒟 in Cond(Cat∞) factors
through𝒟≃ and 𝑆 is projective in Cond(Ani) it follows that we can find a lift in the diagram

𝒞≃

𝑆 𝒟≃

𝑓

which completes the proof.

6.13 Corollary. Let 𝑓∶ 𝑋 → 𝑌 be a surjective morphism of qcqs schemes. Then the functor of
condensed categories Gal(𝑓)∶ Gal(𝑋) → Gal(𝑌) is surjective.

Proof of Corollary 6.13. By Lemma 6.11, we just need to see that the induced functor on cate-
gories of points Gal(𝑋)(∗) → Gal(𝑌)(∗) is surjective. Since any point of 𝑋ét is represented by a
geometric point 𝑥̄ → 𝑋, it is clear.

Right fibrations automatically satisfy descent in the following sense:
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6.14 Definition. An augmented simplicial∞-category 𝒞∙ → 𝒞 is a hypercover if for each 𝑛 ∊ 𝐍,
the induced functor 𝒞𝑛 → (cosk𝑛−1(𝒞∙))𝑛 is surjective.

6.15 Lemma. Let 𝒞∙ → 𝒞 be a hypercover in Cat∞, and assume that for each 𝑛 ∊ 𝐍, the induced
functor 𝒞𝑛 → 𝒞 is a right fibration. Then colim𝚫op 𝒞∙ ⥲ 𝒞.

Proof. By straightening-unstraightening, our given hypercover translates to a hypercover of the
terminal object in the∞-category RFib(𝒞) ≃ PSh(𝒞) of right fibrations over 𝒞. Furthermore,
the inclusion RFib(𝒞) ⊂ Cat∞,∕𝒞 preserves limits and colimits (the case of limits is clear as right
fibrations are defined via a lifting property, for colimits see [66, Corollary A.5]). Since RFib(𝒞)
is a presheaf∞-topos and therefore hypercomplete, the claim follows.

We can now deduce the desired descent results.

6.16 Corollary.

(1) The functor Gal∶ Schqcqs → Cond(Cat∞) is a hypercomplete integral cosheaf.

(2) The functor (−)hypproét ∶ (Sch
qcqs)op → Cat∞ with functoriality given by pullbacks is an integral

hypersheaf.

(3) The functorΠcond
∞ ∶ Schqcqs → Cond(Ani) is a hypercomplete integral cosheaf.

Proof. By [80, Theorem 1.2], we have a natural equivalence

𝑋hyp
proét ≃ Functs(Gal(𝑋),Cond(Ani)) ,

hence second assertion is an immediate consequence of the first. By Proposition 3.36, the third
assertion is also an immediate consequence of the first. Thus, we only need to prove the first
assertion.

Using Corollary 6.10, it follows that for any integral hypercover 𝑋∙ → 𝑋 and 𝑛 ∊ 𝐍, the
canonical map

Gal(cosk𝑛−1(𝑋∙)𝑛) → cosk𝑛−1(Gal(𝑋∙))𝑛
is an equivalence. Thus, Proposition 6.9 and Corollary 6.13 imply that Gal(𝑋∙) is a hypercover
of right fibrations of condensed categories. Since sifted colimits are computed pointwise in the
∞-category Cond(Cat∞) = Fun×(Extrop,Cat∞), the claim follows by combining Remark 6.4
and Lemma 6.15.

We can also recover the schematic description of the over category Gal(𝑋)∕𝑥̄ given in [8,
Corollary 12.4.5]:5

6.17 Corollary. Let 𝑋 be a qcqs scheme, let 𝑥̄ → 𝑋 be a geometric point, and let 𝑋(𝑥̄) denote
the strict normalization of 𝑋 at 𝑥̄ in the sense of [8, Notation 12.4.2]. Then the natural integral
morphism 𝑓∶ 𝑋(𝑥̄) → 𝑋 induces an equivalence of condensed categories

Gal(𝑋(𝑥̄)) ⥲ Gal(𝑋)∕𝑥̄ .
5The description of the under categories of Gal(𝑋) in terms of strict henselizations in loc. cit. is immediate from the

definition. The description of over categories in terms of strict normalizations is less obvious, so we decided to include
an argument here.
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Proof. Since the morphsism 𝑓 is integral, by Proposition 6.9 the functor of condensed categories
Gal(𝑓) is a right fibration. Hence for 𝑥̄ ∶ ∗ → Gal(𝑋(𝑥̄)) → Gal(𝑋), the induced functor

𝑓∕𝑥̄ ∶ Gal(𝑋(𝑥̄))∕𝑥̄ → Gal(𝑋)∕𝑥̄

is an equivalence of condensed categories. The condensed category Gal(𝑋(𝑥̄)) already has a
terminal object induced by the generic point of 𝑋(𝑥̄), which is given by 𝑥̄ → 𝑋(𝑥̄), cf. [56, Theo-
rem 2.4.21]. We conclude using that

Gal(𝑋(𝑥̄)) ≃ Gal(𝑋(𝑥̄))∕𝑥̄ ≃ Gal(𝑋)∕𝑥̄ .

Finally, using someof themachinery developed in [57],we can also deduce integral basechange
for proétale hypersheaves. We do not need this in the rest of this article, but it might be of inde-
pendent interest.

6.18 Proposition. Let
𝑋′ 𝑋

𝑌′ 𝑌

𝑞

𝑔 𝑓

𝑝

be a cartesian square of qcqs schemes where 𝑓 is integral. Then the induced square

(𝑋′)hypproét 𝑋hyp
proét

(𝑌′)hypproét 𝑌hyp
proét

𝑞∗

𝑔∗ 𝑓∗

𝑝∗

is horizontally left adjointable, i.e., the natural exchange transformation 𝑝∗𝑓∗ → 𝑔∗𝑞∗ is an equiv-
alence.

Proof. By [80, Corollary 1.2], this square is identified with the square

Functs(Gal(𝑋′),Cond(Ani)) Functs(Gal(𝑋),Cond(Ani))

Functs(Gal(𝑌′),Cond(Ani)) Functs(Gal(𝑌),Cond(Ani)) .

Gal(𝑞)∗

Gal(𝑔)∗ Gal(𝑓)∗

Gal(𝑝)∗

Since 𝑓 is integral, Proposition 6.9 shows that Gal(𝑓) is a right fibration, and Corollary 6.10
shows that the natural map Gal(𝑋′) → Gal(𝑋) ×Gal(𝑌) Gal(𝑌′) is an equivalence. Because right
fibrations of condensed∞-categories are proper functors [57, Proposition 4.4.7], the the above
square is horizontally left adjointable.

6.2 Digression: strongly künnethable morphisms of schemes
We conclude this section by explaining at what level of generality the Künneth formula for étale
∞-topoi (equivalently, Corollary 6.10) holds.
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6.19 Definition. We call a morphism of schemes 𝑋 → 𝑌 strongly künnethable if for any mor-
phism 𝑌′ → 𝑌 the induced map

(𝑋 ×𝑌 𝑌′)ét → 𝑋ét ×𝑌ét 𝑌
′
ét

is an equivalence.

6.20 Remark. Since all∞-topoi involved in Definition 6.19 are 1-localic, being strongly kün-
nethable is equivalent to the canonical geometric morphism

(𝑋 ×𝑌 𝑌′)ét,≤0 → 𝑋ét,≤0 ×𝑌ét,≤0 𝑌
′
ét,≤0

of 1-topoi being an equivalence.

6.21 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of finite presentation. Then 𝑓 is strongly kün-
nethable if and only if it is quasi-finite.

Proof. Let us first assume that 𝑓 is quasi-finite. Since open immersions are strongly künnethable
by [HTT, Remark 6.3.5.8], we may immediately reduce to the case where 𝑋, 𝑌, and 𝑌′ are affine.
Applying Zariski’s main theorem, we can factor 𝑓 as an open immersion followed by a finite
morphism. Thus we may assume that 𝑓 is finite.

We have to check that the induced map

(6.22) (𝑋 ×𝑌 𝑌′)ét,≤0 → 𝑋ét,≤0 ×𝑌ét,≤0 𝑌
′
ét,≤0

is an equivalence. By Corollary 6.10, it induces an equivalence of categories of points. Further-
more it follows from the site-theoretic description of the fiber product of topoi [45, Exposé XI,
§3] that (6.22) is a coherent geometric morphism of coherent topoi. Thus, theMakkai–Reyes con-
ceptual completeness theorem [SAG, Theorem A.9.0.6] implies that this geometric morphism is
an equivalence.

For the converse, assume that 𝑓 is not quasi-finite. Then at least one geometric fiber of 𝑓
is not quasi-finite. Since taking geometric fibers is compatible with taking étale ∞-topoi [36,
Proposition 2.3], we may reduce to the case where 𝑌 = Spec(𝑘) is the spectrum of a separably
closed field 𝑘. Furthermore, we may always modify 𝑋 by quasi-finite maps to reduce to the
case where 𝑋 is integral of dimension at least 1. By Noether normalization, there exists a finite
surjective map ℎ∶ 𝑋 → 𝐀𝑛

𝑘 . Let 𝑋∙ → 𝐀𝑛
𝑘 denote the Čech nerve of ℎ. Now if 𝑓 were strongly

künnethable, then since the maps𝑋𝑚 → Spec(𝑘) are the composite of a finite map 𝑑0 ∶ 𝑋𝑚 → 𝑋
and 𝑓, it would follow that also all maps 𝑋𝑚 → Spec(𝑘) would be strongly künnethable as well.
Thus for every 𝑘-scheme 𝑌′ and every𝑚 ≥ 0, the induced map

Gal(𝑋𝑚 × 𝑌′) → Gal(𝑋𝑚) × Gal(𝑌′)

would be an equivalence. But by integral descent (Corollary 6.16), after passing to the colimit
over 𝚫op, this would imply that the canonical map

Gal(𝐀𝑛
𝑘 × 𝑌

′) → Gal(𝐀𝑛
𝑘) × Gal(𝑌

′)

is an equivalence.
Thus we may assume that 𝑋 = 𝐀𝑛

𝑘 and therefore even that 𝑋 = 𝐀1
𝑘. Now let 𝑍 = 𝐀1

𝑘 as well.
This would imply that the canonical map

Gal(𝐀2
𝑘) → Gal(𝐀1

𝑘) × Gal(𝐀
1
𝑘)
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is an equivalence. In particular, it would induce an equivalence on underlying posets and thus
an isomorphism of specialization posets

(𝐀2
𝑘)
≤
zar

→ (𝐀1
𝑘)
≤
zar

× (𝐀1
𝑘)
≤
zar

,

which is a contradiction.
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Part II

The condensed fundamental group
The purpose of this part is to analyze the fundamental group of the condensed homotopy type
and its relationship to the étale and proétale fundamental groups. We start by showing that,
surprisingly, πcond1 (𝐀1

𝐂) is nontrivial (see Corollary 7.4). This can be viewed as saying that there
exists a nontrivial proétale local system of condensed rings on 𝐀1

𝐂.
In § 7, we show that a mild quotient of the condensed fundamental group of 𝐀1

𝐂 indeed
becomes trivial. Specifically, Clausen and Scholze introduced a localization 𝐴 ↦ 𝐴qs of the
category of condensed sets called the quasiseparated quotient [69, Lecture VI]. For topological
groups, this is analogous to the Hausdorff quotient. We show that if 𝑋 is a topologically noethe-
rian scheme that is geometrically unibranch, then there is a natural isomorphism of condensed
groups

πcond1 (𝑋, 𝑥̄)qs ⥲ πét1 (𝑋, 𝑥̄),
see Theorem 7.17. Under mild hypotheses on the scheme (e.g., being Nagata), we also prove a
van Kampen formula for the quasiseparated quotient of the condensed fundamental group that
only involves topological free products, topological quotients, and the étale fundamental group
of the normalization, see Theorem 7.35.

In §8, we turn to the relationship between the condensed fundamental group and the proé-
tale fundamental group introduced by Bhatt and Scholze [10, §7]. One of the special features
of πproét1 (𝑋) is that it is a Noohi group. We show that if 𝑋 is topologically noetherian, the Noohi
completion (suitably extended to condensed groups) of πcond1 (𝑋) recovers πproét1 (𝑋), see Theo-
rem 8.12.

7 The quasiseparated quotient of the condensed fundamen-
tal group

In §7.1, we begin by using the Galois category description of the condensed homotopy type
to show that πcond1 (𝐀1

𝐂) is nontrivial. The rest of the section is dedicated to studying the qua-
siseparated quotient of πcond1 (𝐀1

𝐂). In §7.2, we recall the basics on quasiseparated quotients of
condensed sets and prove some fundamental results about the quasiseparated quotient. In §7.3,
we show that the quasiseparated quotient of πcond1 of a geometrically unibranch and topologically
noetherian scheme recovers πét1 . In §7.4, we prove a van Kampen formula for the quasiseparated
quotient of the condensed fundamental group, see Theorem 7.35.

7.1 πcond1 (𝐀1
𝐂) is nontrivial

In this subsection, we show that πcond1 can behave wildly, even in geometrically very simple
situations. For simplicity, we work over the complex numbers 𝐂 in this section. However, we
believe that many analogous statements hold over any algebraically closed field of characteristic
0.
7.1 Notation. For a topological group 𝐺 and an (abstract) subgroup𝐻 < 𝐺, let𝐻nc denote the
group-theoretic normal closure of𝐻 in 𝐺. Let

𝐻tnc ≔ 𝐻nc
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be the topological normal closure of 𝐻 in 𝐺, i.e., the smallest closed normal subgroup of 𝐺 con-
taining𝐻 or, equivalently, the topological closure of𝐻nc in 𝐺.

7.2 Proposition. Let 𝑆 ⊂ 𝐂 be a subset. Let us write

𝐀1
𝐂 ∖ 𝑆 ≔ Spec(𝐂[𝑡][(𝑡 − 𝑎)−1 ∣ 𝑎 ∊ 𝑆]) .

Let F̂r𝐂 be the free profinite group on the underlying set of𝐂. Let𝑁𝑆 be the abstract normal subgroup
of F̂r𝐂 generated by 𝐙(𝑎) for all 𝑎 ∊ 𝐂∖𝑆. Write 𝜂 for the generic point of𝐀1

𝐂 and 𝜂 for the geometric
generic point induced by choosing an algebraic closure of 𝐂(𝑇). There is a short exact sequence of
(abstract) groups

1 → 𝑁𝑆 → F̂r𝐂 → πcond1 (𝐀1
𝐂 ∖ 𝑆, 𝜂)(∗) → 1 .

To prove Proposition 7.2, we make use of an alternative description of BGal(𝑋)(∗) provided by
the following lemma.

7.3 Lemma. Let 𝑋 be a qcqs scheme. Then there is a natural equivalence

BGal(𝑋)(∗) ≃ colim
sd(𝑋≤zar)op

Dec(Gal(𝑋)) .

Proof. Let us simplify notation andwriteGal(𝑋) instead ofGal(𝑋)(∗). Then the functorGal(𝑋) →
𝑋≤
zar is a stratified space and under the equivalence [8, Theorem 2.7.4] it corresponds to a functor

Dec(Gal(𝑋))∶ sd(𝑋≤
zar)op → Ani .

Here sd(𝑋≤
zar) denotes the subdivision poset of𝑋

≤
zar, see [8, Notation 1.1.8]. Furthermore, observe

that colimDec(Gal(𝑋)) ≃ BGal(𝑋). Indeed, the composite functor

Ani Str𝑋≤zar Fun(sd(𝑋≤
zar)op,Ani)

−×𝑋≤zar ∼

preserves colimits and thus coincides with the constant diagram functor from Ani whose left
adjoint is given by taking the colimit.

Proof of Proposition 7.2. Let us simplify notation and write 𝑋 = 𝐀1
𝐂 ∖ 𝑆 and Gal(𝑋) instead of

Gal(𝑋)(∗). We compute BGal(𝑋) using Lemma 7.3. Note that sd(𝑋≤
zar) consists of elements of

the form
{𝑎} , {𝜂} , and {𝑎 < 𝜂}

for any 𝑎 ∊ 𝐂 ∖ 𝑆 and the ordering is given by {𝑎} < {𝑎 < 𝜂} and {𝜂} < {𝑎 < 𝜂}. Furthermore, the
functor Dec(Gal(𝑋))∶ sd(𝑋≤

zar)op → Ani can be explicitly described by applying Π̂ét
∞ followed

by materialization to the diagram sd(𝑋≤
zar)op → Sch that sends {𝑎} < {𝑎 < 𝜂} > {𝜂} to the span

of schemes

Spec(𝐂[𝑇]h(𝑎)) Spec(𝐂[𝑇]h(𝑎)) ∖ {𝑎} Spec(𝐂(𝑇)) ,

see [8, Example 12.2.2]. We for each 𝑎 ∊ 𝐂 ∖ 𝑆, we now choose a lift 𝜂𝑎

Spec(𝐂[𝑇]sh(𝑎)) ∖ {𝑎}

Spec(𝐂(𝑇)) Spec(𝐂(𝑇))𝜂

𝜂𝑎
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In particular,we can lift the above span to a span of pointed schemes and therefore alsoDec(Gal(𝑋))
lifts to a diagram of pointed anima Dec(Gal(𝑋))∗. Using that π1 is an equivalence between
pointed, connected and 1-truncated anima and the category of groups, [HTT, Proposition 7.2.12],
we may thus compute

π1(BGal(𝑋), 𝜂) ≃ colim
sd(𝑋≤zar)op

π1(Dec(Gal(𝑋))∗) .

Now for any {𝑎} < {𝑎 < 𝜂} > {𝜂}, the corresponding span in groups is given by

∗ πét1 (Spec(𝐂[𝑇]
sh
(𝑎)) ∖ {𝑎}, 𝜂𝑎) πét1 (Spec(𝐂(𝑇)), 𝜂)

and the colimit over sd(𝑋≤
zar)op is given by taking the quotient of πét1 (Spec(𝐂(𝑇)), 𝜂) = Gal𝐂(𝑇) by

the (abstract) normal closure of the subgroup generated by the images of all the decomposition
groups

D𝑎 ≔ πét1 (Spec(𝐂[𝑇]
sh
(𝑎) ∖ {𝑎}) .

By Theorem B.3, there is an isomorphism

F̂r𝐂 ⥲ Gal𝐂(𝑇) = πét1 (Spec(𝐂(𝑇)), 𝜂)

underwhich the preimage ofD𝑎 is, up to conjugation, given by𝐙(𝑎). It follows thatπ1(BGal(𝑋), 𝜂)
is isomorphic to the quotient of F̂r𝐂 by the smallest (abstract) normal subgroup containing 𝐙(𝑎)
for all 𝑎 ∊ 𝐂 ∖ 𝑆, as desired.

7.4 Corollary. Let 𝑥̄ be a geometric generic point of 𝐀1
𝐂. Then

πcond1 (𝐀1
𝐂, 𝑥̄) ≠ 1 .

In fact, even the underlying group πcond1 (𝐀1
𝐂, 𝜂)(∗) is nontrivial.

Proof. Consider the canonical continuous map F̂r𝐂 →
∏

𝑐∊𝐂 𝐙 that carries a generator 𝑎 to the
unit vector at 𝑎. Note that the (abstract) normal subgroup 𝑁∅ lands in the subgroup

⨁
𝑎∊𝐂 𝐙.

Thus, by Proposition 7.2, we get a short exact sequence of abstract groups

1 𝑁𝐂 F̂r𝐂 πcond1 (𝐀1
𝐂, 𝜂)(∗) 1

1
⨁

𝑎∊𝐂 𝐙
∏

𝑎∊𝐂 𝐙 𝑄 1,

where 𝑄 ≠ 1 denotes the abstract quotient. The middle vertical map is surjective (because it is
dense, the source is profinite and the target is Hausdorff). Therefore, the right vertical map is
also surjective. Thus πcond1 (𝐀1

𝐂, 𝜂)(∗) ≠ 1.

The following remark and example, while fitting best the current subsection, use the notion
of quasiseparatedness of condensed sets, studied by Clausen–Scholze. The reader might choose
to return to them after consulting Subsection 7.2 below, which contains some recollections and
further facts about quasiseparated quotients.
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7.5 Remark. The proof of Corollary 7.4 can be adapted to show more generally that whenever
𝐂 ∖ 𝑆 is infinite, the condensed group πcond1 (𝐀1

𝐂 ∖ 𝑆, 𝜂) is not profinite and therefore also not
quasiseparated by Theorem 7.17. Indeed, if it was, it would follow from Proposition 7.2 that
𝑁𝑆 ⊂ F̂r𝐂 is a closed subgroup. Thus, the image of𝑁𝑆 under the map F̂r𝐂 →

∏
𝑎∊𝐂 𝐙would also

be closed in
∏

𝑎∊𝐂 𝐙. But this image is exactly
⨁

𝑎∊𝐂∖𝑆 𝐙, which is not closed if 𝐂 ∖ 𝑆 is infinite.
Even more generally, the above arguments show that the condensed fundamental group of any
Dedekind scheme 𝑋 is not quasiseparated whenever the abstract normal closure 𝑁 ⊂ Gal𝐂(𝑋)
of the subgroup generated by all decomposition groups 𝐷 is not closed.

The next example shows that whenever 𝑆 ≠ ∅, even if 𝐂 ∖ 𝑆 is finite, the condensed funda-
mental group on 𝐀1

𝐂 ∖ 𝑆 is not quasiseparated in the sense of Recollection 7.7. For example, this
covers the case of the localization Spec(𝐂[𝑇](𝑇−𝑎)) for 𝑎 ∊ 𝐂.

7.6 Example. Let 𝐺 = F̂r{𝑎,𝑏} be the free profinite group on two elements 𝑎, 𝑏, and let

𝐻 = ⟨𝑏⟩ ≃ 𝐙 ⊂ 𝐺

be the (necessarily free) profinite subgroup of 𝐺 generated by 𝑏.
We claim that𝐻nc ⊊ 𝐻tnc. Indeed, let 𝑔𝑛 =

∏𝑛
𝑖=1(𝑎

𝑖!𝑏𝑖!𝑎−𝑖!). For each 𝑛, 𝑔𝑛 ∊ 𝐻nc. Moreover,
the 𝑔𝑛’s form a Cauchy net (sequence) in 𝐺 and thus converge to some 𝑔 ∊ 𝐺, as 𝐺 is Raı̆kov-
complete: Indeed, for a given 𝑛0 and 𝑛 > 𝑛0, we have 𝑔−1𝑛0 𝑔𝑛 =

∏𝑛
𝑖=𝑛0+1

(𝑎𝑖!𝑏𝑖!𝑎−𝑖!). Let 𝑁 ⊲ 𝐺
be a normal open subgroup. Then there exists 𝑛0 such that for any𝑚 ⩾ 𝑛0, there is 𝑎𝑚!, 𝑏𝑚! ∊ 𝑁.
This is because 𝑎 and 𝑏 are images of generators of 𝐙 via (two different) continuous maps 𝐙 → 𝐺
and the corresponding fact holds already in 𝐙. It now follows that 𝑔−1𝑛0 𝑔𝑛 (and, by normality, also
𝑔𝑛𝑔−1𝑛0 ) lie in 𝑁 for any 𝑛 ≥ 𝑛0. It follows that 𝑔 ∊ 𝐻tnc. We want to show that 𝑔 ∉ 𝐻nc. Assume
the contrary. Then there exist some 𝑟 ∊ 𝐍 and 𝑐𝑖 ∊ 𝐺, 𝑑𝑖 ∊ 𝐻 such that 𝑔 =

∏𝑟
𝑖=1 𝑐𝑖𝑑𝑖𝑐

−1
𝑖 .

Now, consider the following system of finite quotients of 𝐺: 𝑄𝑚 = 𝑃𝑚 ⋊ 𝐙∕𝑚!, where 𝑃𝑚 =
(𝐙∕𝑚!)𝑚! is the 𝑚!-fold product of 𝐙∕𝑚!’s, with an action by 𝐙∕𝑚! that permutes the factors.
The map 𝐺 ↠ 𝑄𝑚 is defined by 𝑏 ↦ (1, 0, 0, …) ∊ 𝑃𝑚 = (𝐙∕𝑚!)𝑚! and 𝑎 ↦ 1̄ ∊ 𝐙∕𝑚!. Note
that 𝑔 lands in 𝑃𝑚 via this map. Now, for 𝑚 ≫ 𝑟, we get that, on the one hand, the image of
𝑔 in 𝑃𝑚 = (𝐙∕𝑚!)𝑚! has an increasing (with 𝑚) number of nonzero entries and, on the other
hand, the presentation 𝑔 =

∏𝑟
𝑖=0 𝑐𝑖𝑑𝑖𝑐

−1
𝑖 implies that this number is bounded by 𝑟. This is a

contradiction.
Now let 𝑆 ⊂ 𝐂 be a non-empty subset. We have a diagram of short exact sequences

1 𝑁𝑆 F̂r𝐂 πcond1 (𝐀1 ∖ 𝑆, 𝜂)(∗) 1

1 𝐻nc F̂r{𝑎,𝑏} F̂r{𝑎,𝑏} ∕𝐻nc 1

where themiddle vertical map sends 𝑧 ∊ 𝐂 to 𝑏 if 𝑧 ∊ 𝑆 and to 𝑎 otherwise. Then, by construction,
𝐻nc is the image of 𝑁𝑆 under this map. Thus, if πcond1 (𝐀1 ∖ 𝑆, 𝜂) was quasiseparated, 𝑁𝑆 would
be a closed subgroup, see Proposition 7.11 below, and so would𝐻nc, contradicting the above.

7.2 Preliminaries on quasiseparated quotients
7.7 Recollection. A condensed set 𝐴 is quasiseparated if for any two maps 𝐵 → 𝐴 and 𝐵′ → 𝐴
in which 𝐵 and 𝐵′ are quasicompact, the pullback 𝐵×𝐴 𝐵′ is quasicompact as well. We denote by
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Cond(Set)qs ⊂ Cond(Set) the full subcategory that is spanned by the quasiseparated condensed
sets.

7.8 Lemma [69, Lemma 4.14]. The inclusion Cond(Set)qs ⊂ Cond(Set) admits a left adjoint
(−)qs that preserves finite products.

Explicitly, if𝐴 is a condensed set, its quasiseparated quotient𝐴qs can be computed by choosing
a cover𝑈 =

∐
𝑖 𝑆𝑖 ↠ 𝐴 by profinite sets and by defining 𝐴qs as the quotient of𝑈 by the closure of

the equivalence relation𝑈 ×𝐴 𝑈 ⊂ 𝑈 × 𝑈.

Since (−)qs preserves finite products, it induces a functor Cond(Grp) → Cond(Grp)qs which
is left adjoint to the inclusion.

7.9 Notation. Given a scheme 𝑋 and geometric point 𝑥̄ → 𝑋, we write

πcond,qs1 (𝑋, 𝑥̄) ≔ πcond1 (𝑋, 𝑥̄)qs

for the quasiseparated quotient of the condensed fundamental group of 𝑋.

Our next goal is to derive a more explicit description of 𝐺qs.

7.10 Definition. An inclusion 𝐶 ⊂ 𝐴 of condensed sets is closed if for every profinite set 𝑆 and
map 𝑆 → 𝐴, the pullback 𝐶 ×𝐴 𝑆 ⊂ 𝑆 is a closed subspace.

7.11 Proposition. For every condensed group 𝐺, its quasiseparated quotient 𝐺qs can be computed
by 𝐺∕{𝑒}, where {𝑒} ⊂ 𝐺 is given by the intersection of all closed normal subgroups of 𝐺.

For the proof, we need two auxiliary results.

7.12 Lemma. Let 𝐴 be a condensed set and let 𝑅 ⊂ 𝐴 × 𝐴 be a closed equivalence relation. Then
the quotient 𝐴∕𝑅 is quasiseparated.

Proof. First, let us choose a cover 𝑈 =
∐

𝑖∊𝐼 𝑆𝑖 ↠ 𝐴 by profinite sets 𝑆𝑖 . Set

𝑅𝐼 ≔ 𝑅 ×
𝐴×𝐴

(𝑈 × 𝑈)

and note that 𝑅𝐼 defines a closed equivalence relation on𝑈 with the property that 𝐴∕𝑅 = 𝑈∕𝑅𝐼 .
Let Λ be the filtered poset of finite subsets of 𝐼, and for each 𝐽 ∊ Λ, let 𝑈𝐽 =

∐
𝑗∊𝐽 𝑆𝑗 . Then we

can write𝑈 as the filtered union of the𝑈𝐽 , and for each 𝐽 ⊂ 𝐽′ the inclusion𝑈𝐽 ⊂ 𝑈𝐽′ is a closed
immersion of compact Hausdorff spaces. Let us moreover set

𝑅𝐽 ≔ 𝑅𝐼 ×
𝑈×𝑈

(𝑈𝐽 × 𝑈𝐽)

for each 𝐽 ∊ Λ. Then each 𝑅𝐽 defines a closed equivalence relation on𝑈𝐽 , and, since Λ is filtered,
we have 𝑅 = colim𝐽∊Λ 𝑅𝐽 . As a consequence, wemay identify𝐴∕𝑅 = colim𝐽∊Λ𝑈𝐽∕𝑅𝐽 . Now since
each 𝑅𝐽 is a closed equivalence relation on𝑈𝐽 , the condensed set𝑈𝐽∕𝑅𝐽 is a compact Hausdorff
space. Moreover, for every inclusion𝑈𝐽 ⊂ 𝑈𝐽′ , the inducedmap𝑈𝐽∕𝑅𝐽 → 𝑈𝐽′∕𝑅𝐽′ is injective by
construction of 𝑅𝐽 and 𝑅𝐽′ and is therefore automatically a closed immersion. Hence the desired
result follows from [69, Proposition 1.2 (4)].

7.13 Lemma. Let 𝜑∶ 𝐺 → 𝐻 be a homomorphism of condensed groups. If 𝐻 is quasiseparated,
then ker(𝜑) is a closed subgroup of 𝐺.
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Proof. Since ker(𝜑) is the inverse image of {𝑒} ⊂ 𝐻, it suffices to show that {𝑒} is closed in
𝐻. For this, pick any map from a profinite set 𝑆 → 𝐻. Since 𝑆 and {𝑒} are quasicompact and
𝐻 is quasiseparated, the fiber product 𝑆 ×𝐻 {𝑒} ⊂ 𝑆 is quasicompact. Since a subobject of a
quasiseparated condensed set is quasiseparated, 𝑆 ×𝐻 {𝑒} is also quasiseparated. It follows that
𝑆 ×𝐻 {𝑒} is compact, and hence a closed subset of 𝑆, as desired.

Proof of Proposition 7.11. We begin by showing that the quotient 𝐺∕{𝑒} is quasiseparated. To see
this, first note that the map

(7.14) (pr0, 𝜇)∶ 𝐺 × {𝑒} → 𝐺 × 𝐺

(where 𝜇 denotes the multiplicationmap) is a closed immersion since when composing this map
with the isomorphism 𝐺 × 𝐺 → 𝐺 × 𝐺 given by (𝑔, ℎ) ↦ (𝑔, 𝑔−1ℎ), the resulting map can be
identified with the product of the identity with the inclusion. Observe that the map in (7.14) is
precisely the equivalence relation defining the quotient group 𝐺∕{𝑒}. Hence the claim follows
from Lemma 7.12.

To complete the proof, we need to show that for every map 𝜑∶ 𝐺 → 𝐻 of condensed groups
in which 𝐻 is quasiseparated, the kernel ker(𝜑) contains {𝑒}. For this, it suffices to check that
ker(𝜑) is closed. This is Lemma 7.13.

7.15 Proposition. Let 1 𝑁 𝐺 𝐻 1 be a short exact sequence of condensed groups. If
𝐻 is quasiseparated, the induced sequence 1 𝑁qs 𝐺qs 𝐻 1 is again exact.

Proof. We only need to show that𝑁qs → 𝐺qs is injective (we are using here𝐻 = 𝐻qs). Since𝐻 is
quasiseparated, Lemma 7.13 shows that 𝑁 → 𝐺 is closed. Therefore, {1}𝑁 = {1}𝐺 (as subgroups
of 𝐺), and thus

𝑁qs = 𝑁∕{1}𝑁 ⟶𝐺∕{1}𝐺 = 𝐺qs

is injective.

7.16 Corollary (fundamental exact sequence on quasiseparated quotients). Let 𝑘 be a field with
separable closure 𝑘̄, let 𝑋 be a qcqs 𝑘-scheme, and let 𝑥̄ → 𝑋𝑘̄ be a geometric point. If 𝑋 is geometri-
cally connected and 𝑋𝑘̄ has finitely many irreducible components, then the sequence of condensed
groups

1 πcond,qs1 (𝑋𝑘̄, 𝑥̄) πcond,qs1 (𝑋, 𝑥̄) Gal𝑘 1

is exact.

Proof. Combine Corollary 5.7 and Remark 5.8 with Proposition 7.15.

7.3 πcond,qs1 of geometrically unibranch schemes

It is a common theme in arithmetic geometry that various generalizations of πét1 are all equal
(and profinite) for normal (more generally: geometrically unibranch) schemes. See [7, Theorem
11.1] and [10, Lemma 7.4.10] for instances of this phenomenon. As we saw before, this fails for
πcond1 and 𝑋 = 𝐀1

𝐂. However, the expected behavior still holds for π
cond,qs
1 . Proving this fact is

the main goal of this subsection.
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7.17 Theorem. Let 𝑋 be a qcqs, geometrically unibranch scheme with finitely many irreducible
components, and let 𝑥̄ be a geometric point of 𝑋. Then the natural homomorphism πcond1 (𝑋, 𝑥̄) →
πét1 (𝑋, 𝑥̄) induces an isomorphism

πcond,qs1 (𝑋, 𝑥̄) ⥲ πét1 (𝑋, 𝑥̄) .

In particular, πcond,qs1 (𝑋, 𝑥̄) is a profinite group.

For the proof, we need the following observation.

7.18 Proposition. Let 𝑋 be a qcqs scheme with a geometric point 𝑥̄ and such that πcond0 (𝑋) is
discrete. Then the canonical comparison homomorphism

πcond1 (𝑋, 𝑥̄) → πét1 (𝑋, 𝑥̄)

witnesses πét1 (𝑋, 𝑥̄) as the profinite completion of π
cond
1 (𝑋, 𝑥̄). The condition on πcond0 is satisfied

(for example) when 𝑋 has locally finitely many irreducible components.

Proof. Combine Lemma 2.12, Lemma 3.14, and Corollary 4.19.

To prove themain result, we first want to show that this quasiseparated quotient is a compact
topological group. For this, we make use of the following simple consequence of the fact that
the fundamental group of a simplicial set coincides with the fundamental group of its geometric
realization:

7.19 Lemma. Let 𝑓∶ 𝑇∙ → 𝑆∙ be a map of simplicial sets that is bijective on vertices and surjective
on edges. Then, for any choice of basepoint 𝑡 ∊ 𝑇0, the induced homomorphism

𝑓∗ ∶ π1(𝑇∙, 𝑡) → π1(𝑆∙, 𝑓(𝑡))

is surjective.

7.20 Lemma. Let 𝑌 → 𝑋 be a morphism of qcqs schemes. Assume that there exist proétale hyper-
covers 𝑋′

∙ → 𝑋 and 𝑌′
∙ → 𝑌 by w-strictly local schemes and a morphism 𝑌′

∙ → 𝑋′
∙ that fit into a

commutative diagram
𝑌′
∙ 𝑋′

∙

𝑌 𝑋

such that:

(1) The inducedmap of profinite setsπ0(𝑌′
0) → π0(𝑋′

0) is a bijection (and thus, a homeomorphism).

(2) The induced map of profinite sets π0(𝑌′
1) → π0(𝑋′

1) is a surjection (and thus, a topological
quotient map).

Then, for any choice of geometric points 𝑦̄ ↦ 𝑥̄, the induced homomorphism

πcond1 (𝑌, 𝑦̄) → πcond1 (𝑋, 𝑥̄)

is a surjection of condensed groups.
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Proof. By Recollection 2.7 and Propositions 3.16 and 3.40, the fundamental group πcond1 (𝑋, 𝑥̄)
can be computed as

Extrop ∍ 𝑆 ↦ π1( colim[𝑚]∊𝚫op
MapTop(𝑆, π0(𝑋

′
𝑚)), 𝑥̄) .

In other words, for each 𝑆, we have to compute the fundamental group of the simplicial set
MapTop(𝑆, π0(𝑋

′
∙)) given by [𝑚] ↦ MapTop(𝑆, π0(𝑋

′
𝑚)). Analogous statements hold for 𝑌′

∙ and
𝑌.

Now, the assumptions on the maps π0(𝑌′
0) → π0(𝑋′

0) and π0(𝑌
′
1) → π0(𝑋′

1) imply that, for
each 𝑆 ∊ Extr, the induced map

MapTop(𝑆, π0(𝑌
′
∙ )) → MapTop(𝑆, π0(𝑋

′
∙))

of simplicial sets satisfies the assumptions of Lemma 7.19. It follows that, for each 𝑆, the map

πcond1 (𝑌, 𝑦̄)(𝑆) → πcond1 (𝑋, 𝑥̄)(𝑆)

is a surjection, as desired.

7.21 Lemma. Let 𝑋 be a quasiseparated, geometrically unibranch, irreducible scheme and let
𝜂 ∊ 𝑋 be its generic point. Let 𝑋∙ be any proétale hypercover by w-contractible qcqs schemes of 𝑋.
Then there exists a proétale hypercover𝑌∙ of 𝜂 satisfying the conditions of Lemma 7.20 (with respect
to 𝑋∙ and the map 𝜂 → 𝑋).

Proof. Let 𝑋∙,𝜂 be the basechange of 𝑋∙ to 𝜂 and note that the map π0(𝑋∙,𝜂) → π0(𝑋∙) is a
levelwise homeomorphism by geometrical unibranchness and the fact that each connected
component of a w-contractible proétale 𝑋′ over 𝑋 is the strict localization at some geometric
point of𝑋 (see e.g. [51, Lemma 3.15]). In particular, the profinite sets π0(𝑋𝑖,𝜂) are still extremally
disconnected. Being w-strictly local, however, will usually be lost after base-changing to 𝜂. We
want to define a w-strictly local hypercover𝑊∙ of 𝜂 with a map to 𝑋∙,𝜂 that still has the desired
properties on π0 in low degrees.

To do that, fix a geometric point 𝜂 lying over 𝜂 and write 𝑋0,𝜂 ≔ 𝑋0,𝜂 ×𝜂 𝜂. The projection
induces a surjective map of profinite sets π0(𝑋0,𝜂) → π0(𝑋0,𝜂). As the target is extremally dis-
connected, this map admits a section. Let 𝑇 ⊂ π0(𝑋0,𝜂) be the image of one such section. By
[10, Lemma 2.2.8], there exists a pro-(Zariski localization) 𝑊0 → 𝑋0,𝜂 that realizes the map
𝑇 ⊂ π0(𝑋0,𝜂) on connected components. Such𝑊0 will in particular be weakly étale over 𝜂, so
w-strictly local by Example 2.40, and, by construction, the map π0(𝑊0) → π0(𝑋0,𝜂) induced by
𝑊0 → 𝑋0,𝜂 → 𝑋0,𝜂 is a homeomorphism. We can extend this to a map of hypercovers

𝑌∙ ≔ cosk0(𝑊0) ×
cosk0(𝑋∙,𝜂)

𝑋∙,𝜂 → 𝑋∙,𝜂

that induces a bijection on 0-simplices. The map on 1-simplices is explicitly given by

(𝑊0 ×𝜂 𝑊0) ×
𝑋0,𝜂×𝜂𝑋0,𝜂

𝑋1,𝜂 → 𝑋1,𝜂

and is therefore surjective since𝑊0 → 𝑋0,𝜂 is surjective. Furthermore, all terms of 𝑌∙ are w-
strictly local since they are all weakly étale over 𝜂 Example 2.40. This completes the proof.
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7.22 Corollary. Let 𝑋 be a quasiseparated, geometrically unibranch, irreducible scheme with
generic point 𝜂 ∊ 𝑋. Choose a geometric point 𝜂 lying over 𝜂. Then the canonical map

Galκ(𝜂) = πcond1 (Spec(κ(𝜂)), 𝜂) ↠ πcond1 (𝑋, 𝜂)

is a surjection of condensed groups.

Proof. Combine Lemmas 7.20 and 7.21 and Example 3.38.

7.23 Lemma. Let𝐺′ ↠ 𝐺 be a surjection of condensed groups. Assume that𝐺′ is a profinite group.
Then the quasiseparated quotient 𝐺qs is a profinite group.

Proof. The quotient 𝐺qs is qcqs (it is qc as a quotient of something qc). By [17, Proposition 2.8],
its underlying condensed set is a compact topological space. It follows (as the embedding of
compact(ly generated) spaces into condensed sets is fully faithful and commutes with products)
that 𝐺q𝑠 is a (Hausdorff) compact group admitting a surjection from a profinite group 𝐺′. Hence
𝐺qs is itself profinite.

Finally, we are ready to prove the main result of this subsection.

Proof of Theorem 7.17. Note that, since Pro(Grpfin) ⊂ Cond(Grp)qs ⊂ Cond(Grp), the profinite
completion 𝐺∧ of a condensed group 𝐺 factors over the quasiseparated quotient 𝐺qs of 𝐺. Our
assumptions guarantee that every connected component is irreducible. By the preceding prepara-
tory results Corollary 7.22 and Lemma 7.23, we thus have that πcond,qs1 (𝑋, 𝑥̄) is already profinite,
hence agrees with the profinite completion πcond1 (𝑋, 𝑥̄)∧. By Proposition 7.18, this latter profinite
completion recovers πét1 (𝑋, 𝑥̄). This completes the proof.

7.24 Remark. It seems like a natural idea to try to extend the notion of quasiseparatedness and
quasiseparated quotients to all condensed anima, and also extend Theorem 7.17 from fundamen-
tal groups to homotopy types. However, a sufficiently nicely behaved quasiseparated quotient
of condensed anima can not exist. More precisely, there is no full subcategory 𝒞 ⊂ Cond(Ani)
with the following properties:

(1) The inclusion 𝒞 ⊂ Cond(Ani) admits a left adjoint (−)qs.

(2) A condensed set is in 𝒞 if and only if its is quasiseparated.

(3) For any quasiseparated condensed group 𝐺, the condensed anima B𝐺 is contained in 𝒞.

Indeed, both B𝐙 and B𝐙 would be contained in 𝒞. Since 𝐙∕𝐙 is the fiber of the canonical map
B𝐙 → B𝐙, the condensed set 𝐙∕𝐙 would also be contained in 𝒞. But 𝐙∕𝐙 is not quasiseparated.

7.4 The van Kampen and Künneth formulas for πcond,qs1

Let us first define a free (nonabelian!) condensed group on a compact space 𝑇 (or, more generally,
condensed set𝑀). The forgetful functor 𝜄 ∶ Cond(Grp) → Cond(Set) has a left adjoint

Frcond(−) ∶ Cond(Set) → Cond(Grp).
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The condensed group Frcond𝑀 is given more explicitly as the sheafification of the functor

Frpre𝑀 ∶ Pro(Setfin)op → Grp
𝑆 ↦ Fr𝑀(𝑆) .

The free group on𝑀 comes with a canonical map𝑀 → Frcond𝑀 in Cond(Set). For a profinite set
𝑇, we want to compare it with Frtop𝑇 , i.e., the free topological group on 𝑇 (see [5, Chapter 7]).
Note that, by the universal property of Frcond𝑇 , there is a canonical homomorphism

Frcond𝑇 → Frtop𝑇

in Cond(Grp).
7.25 Recollection (on free topological groups and products). In this recollection, 𝑇 will always
denote a topological space and 𝐺𝑖 will denote topogical groups.

(1) (Markov, c.f. [5, Theorems 7.1.2 & 7.1.5]) The free topological group Frtop𝑇 on 𝑇 exists for
every Tychonoff (=completely regular) space 𝑇, and the unit 𝜂∶ 𝑇 → Frtop𝑇 is a topological
embedding. In addition, the image 𝜂(𝑇) is a free algebraic basis for 𝐺.

(2) (Graev, Mack, Morris, Ordman, c.f. [5, Theorem 7.4.1]) When 𝑇 is compact (more generally:
kω), then Fr

top
𝑇 is the topological colimit of subspaces

(Fr𝑇)≤𝑛 = 𝐵𝑛(𝑇) = {words of reduced length ≤ 𝑛} .

(3) By [31], the underlying set of ∗top𝑖 𝐺𝑖 is the abstract free product and if the groups are Haus-
dorff, their free product is Hausdorff too.
Moreover (c.f. [52, Remark 4.27]), when the 𝐺𝑖 ’s are either compact or finitely generated
discrete (say 𝐙∗𝑟), by looking at the surjection from a suitable free product (see Lemma 7.30
below) and using (1), it follows that ∗top𝑖 𝐺𝑖 is a topological colimit of compact subsets of
“bounded words”, where by “bounded words” we in particular mean that all “letters” from
one of the 𝐙’s sit inside of some (larger and larger) interval [−𝑛, 𝑛].

7.26 Recollection. In the context of (abstract) free groups on a set𝑀 (resp., free products of
groups 𝐺1, … , 𝐺𝑛) we say that 𝑔

𝑟1
𝑚1 ⋯𝑔𝑟𝑛𝑚𝑛 (resp., 𝑔1…𝑔𝑛), where 𝑔𝑚𝑖 is the generator correspond-

ing to 𝑚𝑖 ∊ 𝑀 (resp., where 𝑔𝑖 is a nontrivial element of one of the groups 𝐺𝑗 , say 𝐺𝑗(𝑖)) is a
reduced word if for 1 ≤ 𝑖 < 𝑛, there is𝑚𝑖 ≠ 𝑚𝑖+1 (resp., 𝑗(𝑖) ≠ 𝑗(𝑖 + 1)).

The following result is a nonabelian analogue of [69, Proposition 2.1]. The proof essentially
follows the one of loc. cit.

7.27 Proposition. Let 𝑇 be a compact Hausdorff topological space. Then the natural map

(7.28) Frcond𝑇 → Frtop𝑇

is an isomorphism.

In the proof, we use the following convention: For a profinite set 𝑆 and 𝑡 ∊ 𝑇(𝑆), we denote
by 𝑔𝑡 ∊ Fr

cond
𝑇 the element given by the composition

𝑆
𝑡
,→ 𝑇 → Frcond𝑇 ,

where 𝑇 → Frcond𝑇 is the unit map.
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Proof. First, we want to check that the map (7.28) is injective. Note that this boils down to
checking that any section of Frpre𝑇 that maps to 1 ∊ Frtop𝑇 , trivializes after passing to a cover in
Pro(Setfin).

Observe that this is the case for the underlying groups. Indeed, it is enough to check that the
map Fr𝑇(∗) → Frtop𝑇 (∗) is injective.6 This follows directly from Recollection 7.25 (1).

We now treat the injectivity for a general 𝑆 ∊ Pro(Setfin). Assume that 1 ≠ 𝑔 ∊ Fr𝑇(𝑆) maps
to 1 ∊ Frtop𝑇 (𝑆). By the previous point, for any 𝑠 ∊ 𝑆, the restriction 𝑔(𝑠) ∊ Fr𝑇(∗) is trivial. Write 𝑔
as a reduced word 𝑔 = 𝑔𝑟1𝑡1 𝑔

𝑟2
𝑡2 ⋯𝑔𝑟𝑚𝑡𝑚 , where now 𝑡𝑗 ∊ 𝑇(𝑆). All 𝑔𝑡𝑗 are nonzero and, if𝑚 > 1, we

have 𝑔𝑡𝑖 ≠ 𝑔𝑡𝑖+1 for 1 ≤ 𝑖 ≤ 𝑚 − 1.
If 𝑚 = 1, then we plug in any 𝑠 ∊ 𝑆 to see that 1 = 𝑔(𝑠) = 𝑔𝑟1𝑡1(𝑠). But the right hand side

cannot be trivial being a generator in the free group raised to a nonzero power – a contradiction.
Assume now that𝑚 > 1. Let 𝑆𝑗 denote the closed subset of 𝑆 where 𝑡𝑗 = 𝑡𝑗+1. First, note that

the 𝑆𝑗 ’s (where 1 ≤ 𝑗 < 𝑚) jointly cover 𝑆. Indeed, if that would not be the case, then any point
𝑠 in the complement would have the property that 1 = 𝑔(𝑠) = 𝑔𝑟1𝑡1(𝑠)𝑔

𝑟2
𝑡2(𝑠)

⋯𝑔𝑟𝑚𝑡𝑚(𝑠) is a nontrivial
reduced word – a contradiction.

Thus, passing to a finite closed cover of 𝑆, we can assume that 𝑡𝑗 = 𝑡𝑗+1 for some 𝑗, effectively
reducing the length of the shortest word that 𝑔 can be written as. By induction, this implies that
𝑔 has to be trivial – a contradiction.

As the proof of injectivity is finished, we now move on to surjectivity. Consider the map of
compact topological spaces

𝑇𝑛 × {−1, 0, 1}𝑛 → (Frtop𝑇 )≤𝑛

given by (𝑡1, … , 𝑡𝑛, 𝜀1, … , 𝜀𝑛) ↦ 𝑔𝜀1𝑡1 ⋯𝑔𝜀𝑛𝑡𝑛 . Thismap is clearly surjective. It fits into a commutative
square

𝑇𝑛 × {−1, 0, 1}𝑛 (Frtop𝑇 )≤𝑛

Frcond𝑇
⋃

𝑚(Fr
top
𝑇 )≤𝑚 = Frtop𝑇 .

Evaluating at any 𝑆 ∊ Extr, and using [10, Lemma 4.3.7], this shows the surjectivity of the lower
horizontal map (by varying 𝑛).

7.29 Remark. Assume that 𝑆 = lim𝑖 𝑆𝑖 is a profinite set with 𝑆𝑖 finite. Essentially, the same proof
strategy (but without having to use the results of Recollection 7.25 (1)) shows further that Frcond𝑆
and Frtop𝑆 are isomorphic to the group

⋃
𝑚 lim𝑖

(
(Fr𝑆𝑖 )≤𝑚

)
. This is analogous to the presentation

in [69, Proposition 2.1].

Similarly as before, one can introduce the free condensed product ∗cond of condensed groups.
It is the coproduct in the category of condensed groups. It can be explicitly described as the
sheafification of the presheaf ∗pre𝑖 𝐺𝑖 given by

Pro(Setfin)op → Grp
𝑆 ↦∗𝑖 𝐺𝑖(𝑆) .

6We are using here that evaluating Frcond𝑊 on ∗ as a sheaf is the same as evaluating its defining presheaf.
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Free products of topological groups ∗top exist as well and for 𝐺𝑖 ∊ Grp(Top) there is a canon-
ical homomorphism ∗cond𝑖 𝐺𝑖 → ∗top𝑖 𝐺𝑖 .

First, let use prove an auxiliary lemma.

7.30 Lemma. Let 𝐺1, … , 𝐺𝑚 be compact Hausdorff topological groups and 𝑟 ∊ 𝐍. Denote by
𝑇 = 𝐺1 ⊔ ⋯ ⊔ 𝐺𝑚 ⊔ {1, … , 𝑟} the topological space that is the disjoint union of the 𝐺𝑖 ’s and 𝑟
singletons. Then the canonical homomorphism

Frcond𝑇 → 𝐺1 ∗cond ⋯ ∗cond 𝐺𝑚 ∗cond 𝐙∗cond𝑟.

is surjective. An analogous fact holds for topological free products.

Proof. The universal properties of these groups give a homomorphism as above (here, we are
mapping each of the 𝑟 points in 𝑇 to 1 ∊ 𝐙 via one of the 𝑟 canonical maps 𝐙 → 𝐙∗cond𝑟). This
map already exists on the level of the defining presheaves and is surjective there, so the map of
sheaves is surjective as well.

We omit the details for the topological counterpart (it uses Recollection 7.25).

7.31 Proposition. Let 𝐺1, … , 𝐺𝑚 be compact Hausdorff topological groups and 𝑟 ∊ 𝐍. Then the
natural map

𝐺1 ∗cond ⋯ ∗cond 𝐺𝑚 ∗cond 𝐙∗cond𝑟 → 𝐺1 ∗top ⋯ ∗top 𝐺𝑚 ∗top 𝐙∗top𝑟

is an isomorphism in Cond(Grp).

Proof. To see the surjectivity, one can either redo the argument in the proof of Proposition 7.27 or
use its statement together with Lemma 7.30 and the diagram (with 𝑇 = 𝐺1⊔…⊔𝐺𝑚⊔ ∗ ⊔…⊔ ∗)

Frcond𝑇 ∗cond𝑖 𝐺𝑖

Frtop𝑇 ∗top𝑖 𝐺𝑖

Now, for the injectivity, the argument is very similar to the proof of Proposition 7.27. We can
work with ∗pre𝑖 𝐺𝑖 . The homomorphism of underlying groups

∗𝑖 𝐺𝑖(∗) →
(
∗top𝑖 𝐺𝑖

)
(∗)

is a bijection (see Recollection 7.25).
Now, fix 𝑆 ∊ Pro(Setfin) and let 𝑔 = 𝑔1𝑔2⋯𝑔𝑛 ∊∗𝑖 𝐺𝑖(𝑆) be mapping to 1 ∊

(
∗top𝑖 𝐺𝑖

)
(𝑆).

Here, each 𝑔𝑗 is in some 𝐺𝛼(𝑗)(𝑆) and we can assume this presentation of 𝑔 is a reduced word
(we assume𝑚 > 1 as the case when𝑚 = 1 is again easy). We know that 𝑔(𝑠) ∊∗𝑗 𝐺𝑗(∗) is trivial
for any 𝑠 ∊ 𝑆.

Let 𝑆𝑗 denote the closed subsets of 𝑆 where 𝑔𝑗 vanishes. First, note that the 𝑆𝑗 ’s (where
1 ≤ 𝑗 ≤ 𝑛) jointly cover 𝑆. Indeed, if that’s not the case, then any point 𝑠 in the complementwould
have the property that 𝑔(𝑠) = 𝑔1(𝑠)𝑔2(𝑠)⋯𝑔𝑛(𝑠) is a nontrivial reduced word – a contradiction.

But now, passing to the this cover, we have again reduced the length of the presentation of 𝑔
as a word. We are done by induction.
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7.32 Lemma. Let 𝑇 be a compactly generated topological space. Sending a closed subspace 𝑍 ⊂ 𝑇
to 𝑍 → 𝑇 induces an order-preserving bijection between closed subspaces of 𝑇 and closed condensed
subsets of 𝑇. The inverse is given by sending a closed condensed subset 𝑍 ⊂ 𝑇 to 𝑍(∗) ⊂ 𝑇(∗) = 𝑇
equipped with the subspace topology.

Proof. In order to avoid confusion during the proof, we will write 𝑆 for the condensed set repre-
sented by a profinite set 𝑆. We at first check that the inverse defined above is well-defined, that
is, that 𝑍(∗) is a closed subset of 𝑇. We may check this after pulling back along any continuous
map 𝑓∶ 𝑆 → 𝑇 for 𝑆 a profinite set. Then the pullback 𝑆 ×𝑇 𝑍(∗) ⊂ 𝑆 is the subspace given by
those 𝑠 ∊ 𝑆 such that 𝑓(𝑠) ∊ 𝑍(∗). If we alternatively compute the pullback 𝑍 ×𝑇 𝑆 in Cond(Set),
then 𝑍 ×𝑇 𝑆 ⊂ 𝑆 is a closed condensed subset by definition. In particular, (𝑍 ×𝑇 𝑆)(∗) is a closed
subset of 𝑆. But (𝑍 ×𝑇 𝑆)(∗) = 𝑍(∗) ×𝑇 𝑆, as subsets of 𝑆, and thus 𝑍(∗) is closed.

Furthermore, for a closed subspace 𝑍 ⊂ 𝑇, we have 𝑍 = 𝑍(∗). So, conversely, let us start
with a closed condensed subset 𝑍 ⊂ 𝑇. Then for any 𝑆 ∊ Pro(Setfin) we claim that the subset
𝑍(𝑆) ⊆ 𝑇(𝑆) is given by those 𝑓∶ 𝑆 → 𝑇 such that for all 𝑠 ∊ 𝑆, 𝑓(𝑠) ∊ 𝑍(∗). Indeed, since 𝑍 is a
subobject, 𝑓 is in 𝑍(𝑆), if and only if the monomorphism 𝑗 ∶ 𝑍 ×𝑇 𝑆 → 𝑆 is an isomorphism. But
since 𝑗 is a closed immersion, it follows that 𝑗 is an isomorphism if and only if 𝑗(∗) is. But this
is the case if and only 𝑓(𝑠) ∊ 𝑍(∗) for all 𝑠 ∊ 𝑆, as claimed. Since the same description applies
to the condensed subset represented by the subspace 𝑍(∗) equipped with the closed subspace
structure, the claim follows.

7.33 Corollary. Let 𝐺 be a topological group and𝐻 ⊲ 𝐺 a normal condensed subgroup. Assume
that 𝐺qs is represented by a compactly generated topological group 𝐺0. Let 𝐻0 = im(𝐻 → 𝐺 →
𝐺qs = 𝐺0). Then the canonical homomorphism

(𝐺∕𝐻)qs ⥲ 𝐺0
/
𝐻0(∗) in Cond(Grp)

is an isomorphism, where𝐻0(∗) denotes the topological closure in 𝐺.

Proof. Comparing universal properties, we see that the canonical map (𝐺∕𝐻)qs → (𝐺qs∕𝐻0)qs
is an isomorphism. By Proposition 7.11, it follows further that (𝐺qs∕𝐻0)qs → 𝐺qs∕𝐻0. Now since
𝐺qs = 𝐺0, Lemma 7.32 shows that𝐻0 = 𝐻0(∗), completing the proof.

We now fix some notation for the van Kampen formula.

7.34 Notation. Let 𝑋 be a scheme.

(1) Assume 𝑋 is connected and has finitely many irreducible components. Write 𝜈∶ 𝑋𝜈 → 𝑋
for the normalization and write

𝑋2𝜈 ≔ 𝑋𝜈 ×𝑋 𝑋𝜈 and 𝑋3𝜈 ≔ 𝑋𝜈 ×𝑋 𝑋𝜈 ×𝑋 𝑋𝜈 .

Assume that 𝑋2𝜈 and 𝑋3𝜈 also have finitely many irreducible components (e.g., when 𝑋 is
Nagata). Decompose 𝑋𝜈 =

∐
𝑖 𝑋

𝜈
𝑖 into connected components. Write Γ for the “dual” graph

with vertices 𝑉 = π0(𝑋𝜈) and edges 𝐸 = π0(𝑋2𝜈), and fix a maximal tree 𝑇.

(2) We write Πcond
1 (𝑋) ≔ τ≤1Πcond

∞ (𝑋) (resp. Π̂ét
1 (𝑋) ≔ τ≤1Π̂ét

∞(𝑋)) for the condensed (resp.
profinite étale) fundamental groupoid of 𝑋. Here, τ≤1 denotes 1-truncation of condensed
(resp. profinite) anima.
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7.35Theorem (vanKampen formula for the quasiseparated fundamental group). In the notation
of Notation 7.34, after making choices of geometric base points and étale paths (as in [73, Corollary
5.3]), one has a canonical isomorphism

πcond,qs1 (𝑋, 𝑥̄) ≃
(
∗top𝑖 πét1 (𝑋

𝜈
𝑖 , 𝑥̄𝑖) ∗

top π1(Γ, 𝑇)
)
∕𝐻tnc ,

where𝐻 is the subgroup generated by the following relations:

(1) For all 𝑒 ∊ 𝐸 and 𝑔 ∊ πét1 (𝑒, 𝑥̄(𝑒)) we have π
ét
1 (𝜕1)(𝑔)𝑒 = 𝑒πét1 (𝜕0)(𝑔).

(2) For all 𝑓 ∊ π0(𝑋3𝜈), we have

⃖⃖⃖⃗(𝜕2𝑓)𝛼
(𝑓)
102(𝛼

(𝑓)
120)

−1 ⃖⃖⃖⃗(𝜕0𝑓)𝛼
(𝑓)
210(𝛼

(𝑓)
201)

−1
(
⃖⃖⃖⃗(𝜕1𝑓)

)−1
𝛼(𝑓)021(𝛼

(𝑓)
012)

−1 = 1 .

Here, each 𝛼(𝑓)𝑖𝑗𝑘 lives in some π
ét
1 (𝑋

𝜈
𝑙 , 𝑥̄𝑙) and 𝑒, ⃖⃖⃖⃗(𝜕𝑖𝑓) ∊ π1(Γ, 𝑇).

Proof. Combining Corollary 6.16, left adjointness of 1-truncation and [41, Proposition A.1], we
get an equivalence of condensed groupoids.

colim
[𝑘]∊𝚫op⩽2

Πcond
1 (𝑋𝑘𝜈) ⥲ Πcond

1 (𝑋).

The fixed geometric points and étale paths fix points and paths in Πcond
1 (𝑋)(∗), Πcond

1 (𝑋𝜈
𝑖 )(∗), …

and so in any Πcond
1 (𝑋)(𝑆), Πcond

1 (𝑋𝜈
𝑖 )(𝑆), … for 𝑆 ∊ Extr. By Corollary 4.19, these groupoids are

connected. We now want to pass from a statement about fundamental groupoids to a statement
involving fundamental groups. For a fixed 𝑆 ∊ Extr, we can apply the usual “discrete” van
Kampen formula: see [52, Theorem 3.7] for a version for 2-complexes of Noohi (and so also
discrete) groups or [11, Chapter IV, §5], cf. also [73]. It implies that

πcond1 (𝑋, 𝑥̄) ≃
(
∗cond𝑖 πcond1 (𝑋𝜈

𝑖 , 𝑥̄𝑖) ∗
cond π1(Γ, 𝑇)

)
∕𝐻′

where 𝐻′ is the normal condensed subgroup that for each 𝑆 is generated by relations analogous
relations as in the statement, but where 𝑔 ∊ πcond1 (𝑒, 𝑥̄(𝑒))(𝑆), etc.

Now, passing to quasiseparated quotients and using πcond1 (𝑋𝜈
𝑖 , 𝑥̄𝑖)

qs = πét1 (𝑋
𝜈
𝑖 , 𝑥̄𝑖) (this is

Theorem 7.17) together with Proposition 7.31 and Corollary 7.33 yields the result.
Wehave used the following observation to get 𝑔 ∊ πét1 (𝑒, 𝑥̄(𝑒)) as opposed to 𝑔 ∊ π

cond,qs
1 (𝑒, 𝑥̄(𝑒))

or 𝑔 ∊ πcond1 (𝑒, 𝑥̄(𝑒)) in relation (1): although 𝑋2𝜈 might not be normal, so πcond,qs1 (𝑒, 𝑥̄(𝑒))might
differ from πét1 (𝑒, 𝑥̄(𝑒)), the maps π

cond,qs
1 (𝜕1), π

cond,qs
1 (𝜕0) have profinite groups as the targets

and thus, factorize through the profinite completion of πcond,qs1 (𝑒, 𝑥̄(𝑒)), which is πét1 (𝑒, 𝑥̄(𝑒)) (cf.
Proposition 7.18). As the topological normal closure of the image of πcond,qs1 (𝑒, 𝑥̄(𝑒))(∗) inside
πét1 (𝑒, 𝑥̄(𝑒) is the whole group (one uses the universal property of the profinite completion to
check this), the set of relations

{πét1 (𝜕1)(𝑔)𝑒π
ét
1 (𝜕0)(𝑔)

−1𝑒−1|𝑒 ∊ 𝐸, 𝑔 ∊ πét1 (𝑒, 𝑥̄(𝑒))}

is still in 𝐻tnc and contains the original set of relations (i.e. a similarly defined one where 𝑔 ∊
πcond,qs1 (𝑒, 𝑥̄(𝑒))), as desired.

63



7.36 Example. Let 𝑘 be a separably closed field.

(1) Let 𝐶1 and 𝐶2 be normal curves over 𝑘 with fixed closed points 𝑐𝑖 ∊ 𝐶𝑖 . Let 𝐶 = 𝐶 ⊔𝑐1=𝑐2 𝐶2
be the gluing of these curves along these closed points. Then

πcond,qs1 (𝐶, 𝑐) ≃ πét1 (𝐶1, 𝑐1) ∗
top πét1 (𝑋2, 𝑐2) .

(2) Let 𝐶 be the nodal curve over 𝑘 obtained from 𝐏1𝑘 by identifying 0 and 1. Then

πcond,qs1 (𝐶, 𝑐) ≃ 𝐙 .

For more computations involving the van Kampen formula (but for Noohi groups), see [52].

7.37 Corollary (Künneth formula for the quasiseparated fundamental groups). Let 𝑘 be a sepa-
rably closed field and let𝑋 and𝑌 be 𝑘-schemes such that𝑋,𝑌, and𝑋×𝑘 𝑌 satisfy the hypotheses of
Notation 7.34. Let 𝑧̄ → 𝑋 ×𝑘 𝑌 be a geometric point lying over geometric points 𝑥̄ → 𝑋 and 𝑦̄ → 𝑌.
If 𝑌 is proper or char(𝑘) = 0, then the natural homomorphism of condensed groups

πcond,qs1 (𝑋 ×𝑘 𝑌, 𝑧̄) → πcond,qs1 (𝑋, 𝑥̄) × πcond,qs1 (𝑌, 𝑦̄)

is an isomorphism.

To prove this result, one can combine the van Kampen formula for πcond,qs1 and the classical
Künneth formula for πét1 as in the proof of [52, Proposition 3.29], but this would require one
to argue using the explicit relations appearing in the van Kampen theorem. To avoid it, it is
beneficial to first apply the classical van Kampen in the groupoid form and only compute the
π1’s at the very end. This is how we structure the proof below.

Proof. Fix integral hypercovers 𝜈𝑋,∙, 𝜈𝑌,∙ by normal schemes of 𝑋 and 𝑌. Their product is again
an integral hypercover of 𝑋 ×𝑘 𝑌 by normal schemes. Apply Π̂ét

∞(−) to these diagrams and pass
to colimits in Cond(Ani). The fixed geometric point 𝑧̄ points them. Then 1-truncate and apply
πcond,qs1 (−) to both sides. We get a homomorphism of condensed groups

π1( colim[𝑚]∊𝚫op
Π̂ét
1 (𝑋𝑚 × 𝑌𝑚), ∗)qs → π1( colim[𝑚]∊𝚫op

Π̂ét
1 (𝑋𝑚) × Π̂

ét
1 (𝑌𝑚), ∗)

qs

Using [41, Proposition A.1], we can replace colim[𝑚]∊𝚫op by colim[𝑚]∊𝚫op⩽2
. Apply the usual Kün-

neth formula for πét1 (c.f. [SGA 1, Exposé X, Corollaire 1.7 & Exposé XII, Proposition 4.6] or [35,
§4]), which implies that Π̂ét

1 (𝑋𝑚 × 𝑌𝑚) = Π̂ét
1 (𝑋𝑚) × Π̂

ét
1 (𝑌𝑚), to get an isomorphism

π1( colim
[𝑚]∊𝚫op⩽2

Π̂ét
1 (𝑋𝑚 × 𝑌𝑚), ∗)qs ⥲ π1( colim

[𝑚]∊𝚫op⩽2
Π̂ét
1 (𝑋𝑚), ∗)

qs × π1( colim
[𝑚]∊𝚫op⩽2

Π̂ét
1 (𝑌𝑚), ∗)

qs .

Now, using the equality πcond,qs1 = πét1 on normal schemes and arguing via the van Kampen
formula as in Theorem 7.35 to replace the fundamental groupoids by groups, we get that, e.g.,

π1( colim
[𝑚]∊𝚫op⩽2

Π̂ét
1 (𝑋𝑚), ∗)

qs = πcond,qs1 (𝑋, 𝑥̄)
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and similarly for𝑌 and𝑋×𝑌. Note that𝑋2𝜈, 𝑋3𝜈 (and similarly for𝑌…) might not be normal, but
in the van Kampen formula all maps from πcond,qs1 of (connected components) of those schemes
will always factor though a profinite group (by normality of 𝑋𝜈, 𝑌𝜈 and 𝑋𝜈 × 𝑌𝜈), so we were
allowed to replace Πcond

1 by Π̂ét
1 even for those non-normal schemes in the above computation

(cf. similar argument appears in the proof of Theorem 7.35). This completes the proof.

7.38 Corollary. Let 𝐾 ⊃ 𝑘 be an extension of separably closed fields, and let 𝑋 be a 𝑘-scheme
satisfying the hypotheses of Notation 7.34. If char(𝑘) = 0 or𝑋 is proper, then the projection𝑋𝐾 → 𝑋
induces an isomorphism

πcond,qs1 (𝑋𝐾) ⥲ πcond,qs1 (𝑋) .

In the parlance of [49], the property of schemes established in Corollary 7.38 could be called
“πcond,qs1 -properness”.

7.39 Remark. In the context of anabelian geometry, it is sometimes beneficial to have a version
of the Kurosh subgroup theorem available in the category of groups where our fundamental
groups live, or at least its corollary: the characterization of maximal finite/compact/. . . subgroups
of a free product as a "vertex subgroup" (i.e., one of the free summands up to conjugation). See,
e.g., [61]. Proving such a result for the proétale fundamental group seems rather tricky due to
the presence of Noohi completions. For πcond,qs1 , however, this can be done: see Proposition 7.40.

7.40 Proposition. Let 𝑋 be a scheme and 𝑥̄ a geometric point such that

πcond,qs1 (𝑋, 𝑥̄) ≃ ∗top𝑖 𝐺𝑖 ∗top 𝐙∗𝑟

where the𝐺𝑖 are profinite and 𝑟 ∊ 𝐍. Let𝐻 be a compact topological groupand𝜑∶ 𝐻 → πcond,qs1 (𝑋, 𝑥̄)
a continuous homomorphism. Then im(𝜑) ⊂ 𝑔𝐺𝑖𝑔−1 for some 𝑖 and 𝑔 ∊ π

cond,qs
1 (𝑋, 𝑥̄).

Proof. This follows follows from [63, Theorem 1].

7.41 Remark. We expect the assumptions of Proposition 7.40 to be satisfied, e.g., when 𝑋 is a
(semistable) curve over a separably closed field 𝑘, with 𝐺𝑖 = πét1 (𝑋

𝜈
𝑖 , 𝑥̄𝑖), where 𝑋 = ⊔𝑖𝑋𝜈

𝑖 is the
the normalization of 𝑋.

For πét1 (or even πproét1 ), this is a classical computation using the van Kampen theorem when
𝑋 is semistable (c.f. [73, Example 5.5] in the case of πét1 or [54, Theorem 1.17] for πproét1 ) but
with some care can be done for arbitrary curves, see [53, Theorem 2.27]. A similar computation
(using Theorem 7.35) should extend this to πcond,qs1 .

8 TheNoohi completionof the condensed fundamental group

The goal of this section is to recover the proétale fundamental group πproét1 (𝑋, 𝑥̄) of [10, §7] of
a topologically noetherian scheme 𝑋 from the condensed fundamental group πcond1 (𝑋, 𝑥̄). The
main input needed for this is the observation that all weakly locally constant sheaves in the sense
of [10, Definition 7.3.1] can be recovered from πcond1 (𝑋, 𝑥̄). We prove a stronger derived version
of that result in §8.1. In §8.2, we explain how to Noohi complete condensed groups and show
that the Noohi completion of πcond1 (𝑋, 𝑥̄) is indeed the proétale fundamental group of [10, §7].
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8.1 Recovering weakly locally constant sheaves
In this subsection, we explain how to recover weakly locally constant proétale sheaves on a
scheme 𝑋 as representations of the condensed homotopy type. The following is a generalization
of [10, Definition 7.3.1] to sheaves of anima:

8.1 Recollection. Recall that for a qcqs scheme 𝑋 there is a canonical algebraic morphism
Sh(π0(𝑋)) → 𝑋ét induced by sending a clopen in π0(𝑋) to its preimage in 𝑋. Furthermore
𝐹 ∊ 𝑋hyp

proét is said to be locally weakly constant if there is a proétale cover {𝑈𝑖 → 𝑋}𝑖∊𝐼 by qcqs
schemes such that each 𝐹|𝑈𝑖 is in the image of the canonical algebraic morphism

Sh(π0(𝑈𝑖)) 𝑈hyp
𝑖,ét 𝑈hyp

𝑖,proét .
𝜈∗

We denote the full subcategory of 𝑋hyp
proét spanned by the locally weakly constant sheaves by

wLoc(𝑋).

8.2 Definition. We define the condensed∞-category Aniult by the assignment

𝑆 ↦ Sh(𝑆)

for every profinite set 𝑆. Similarly, we refer to the 0-truncated version of this condensed∞-cate-
gory by Setult.

For every profinite set 𝑆, there is a canonical fully faithful comparison functor

𝑐∗𝑆 ∶ Sh(𝑆) ↪ Cond(Ani)∕𝑆

which is part of a geometric morphism of∞-topoi [32, Sections 3.2]. As the comparison map is
natural in 𝑆, see [32, Lemma 3.16], it induces an embedding

Aniult ↪ Cond(Ani)

of condensed∞-categories.

8.3Remark. The superscript ‘ult’ comes from thewordultrastructure. Any categorywith filtered
colimits and infinite products can be canonically upgraded to an ultracategory by equipping it
with the categorical ultrastructure, see [55, Example 1.3.8]. In [55, Construction 4.1.1] Lurie
explains how to regard ultra categories as condensed categories. Furthermore it follows from [55,
Theorem 3.4.4] that the image of Set equipped with the categorical ultrastructure is precisely
Setult.

8.4 Recollection. Using [80, Corollary 1.2], we have a fully faithful functor

𝑏∗ ∶ Functs
(
Πcond
∞ (𝑋),Cond(Ani)

)
⟶ Functs

(
Gal(𝑋),Cond(Ani)

)
≃ 𝑋hyp

proét

given by precomposition with the localization 𝑏∶ Gal(𝑋) → BcondGal(𝑋) = Πcond
∞ (𝑋) as in the

proof of Proposition 3.36.

8.5 Theorem. Let 𝑋 be a qcqs scheme. The composite fully faithful functor

(8.6) Functs
(
Πcond
∞ (𝑋),Aniult

)
Functs

(
Πcond
∞ (𝑋),Cond(Ani)

)
𝑋hyp
proét

𝑏∗

has image the full subcategory wLoc(𝑋) of locally weakly constant sheaves.
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The idea of the proof of Theorem 8.5 is to show it first in the case of w-contractible affine
schemes and then conclude by proétale hyperdescent.

8.7 Lemma. Let𝑊 be a w-contractible affine scheme. Then the fully faithful functor

Functs(π0(𝑊),Aniult) → 𝑊hyp
proét

has image wLoc(𝑊).

Proof. Recall that since 𝑊 is w-contractible, Πcond
∞ (𝑊) ≃ π0(𝑊). Moreover, since π0(𝑊) is a

profinite set, the Yoneda lemma implies that

Functs(π0(𝑊),Aniult) ≃ Aniult(π0(𝑊)) ≃ Sh(π0(𝑊))

and the given functor is identified with the pullback functor

Sh(π0(𝑊)) ↪ 𝑊hyp
proét

along𝑊 → π0(𝑊). Therefore it lands in wLoc(𝑊) by definition and it remains to show surjec-
tivity. Let 𝐹 ∊ wLoc(𝑊). Then there is a proétale cover 𝑝∶ 𝑈 → 𝑊 such that 𝑝∗𝐹 is in the image
of Sh(π0(𝑈)) → 𝑈hyp

proét. Since𝑊 is w-contractible, we can pick a section 𝑠 ∶ 𝑊 → 𝑈 and since
the diagram

𝑊 π0(𝑊)

𝑈 π0(𝑈)

𝜈

𝑠 π0(𝑠)

commutes, we see that 𝐹 = 𝑠∗𝑝∗𝐹 is in the image of 𝜈∗.

Proof of Theorem 8.5. As we have a chain of fully faithful functors (8.6), we regard

Functs
(
Πcond
∞ (𝑋),Aniult

)

as a full subcategory of 𝑋hyp
proét. It remains to show that this full subcategory agrees with the full

subcategory wLoc(𝑋). Since the assignment 𝑌 ↦ Πcond
∞ (𝑌) is a hypercomplete proétale cosheaf,

the assignment
𝑌 ↦ Fun(Πcond

∞ (𝑌),Aniult)

is in a fact a subsheaf of the proétale hypersheaf 𝑌 ↦ 𝑌hyp
proét. Furthermore, by definition, the

assignment
𝑌 ↦ wLoc(𝑌)

is subsheaf of the proétale hypersheaf 𝑌 ↦ 𝑌hyp
proét. Therefore, it suffices to see that they agree on

w-contractibles, which is the content of Lemma 8.7.

8.2 Recovering the proétale fundamental group
To define Noohi completion for condensed groups, we will use the following left adjoint.
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8.8 Recollection. The canonical functor Grp(Top) → Cond(Grp) admits a left adjoint

(−)top ∶ Cond(Grp) → Grp(Top) .

Note, however, that in general it is not the restriction of the left adjoint "underlying topologi-
cal space" functor

(−)(∗)top ∶ Cond(Set) → Top

to condensed groups, as this latter functor does not preserve products.

It turns out that some insight into what (−)(∗)top does can be gained in terms of quasitopo-
logical groups.

8.9 Remark. Recall that a quasitopological group is a topological space𝐺 with an abstract group
structure such that:

(1) The inversion operation 𝐺 → 𝐺 given by 𝑔 ↦ 𝑔−1 is continuous.

(2) For each ℎ ∊ 𝐺, the translations 𝑙ℎ, 𝑟ℎ ∶ 𝐺 → 𝐺, given by 𝑔 ↦ 𝑔ℎ and 𝑔 ↦ ℎ𝑔, are continuous.

The embeddingGrp(Top) ⊂ qTopGrp of topological groups into quasitopological groups admits
a left adjoint

𝜏∶ qTopGrp→ Grp(Top)

that moreover preserves the underlying abstract group and only affects the topology, cf. [12,
Lemma 3.2 & Theorem 3.8].

While the functor (−)(∗)top does not provide (after restriction) an adjoint betweenCond(Grp)
and Grp(Top), its image still lands in qTopGrp. This is essentially because the condition of
continuity of the inversion and translation maps does not involve forming a product. Thus, after
restriction, we can consider

(−)(∗)top ∶ Cond(Grp) → qTopGrp

Postcomposing with 𝜏, we get a functor

𝜏◦(−)(∗)top ∶ Cond(Grp) → Grp(Top)

One can then quite directly verify (see [56, Proposition 1.3.16] for details) the following result:

The composition 𝜏◦(−)(∗)top is a left adjoint to the "associated condensed group" functor. Visu-
ally

𝜏◦(−)(∗)top ∶ Cond(Grp) ⇄ Grp(Top)∶ (−)

Let us denote this composed functor by (−)top. It follows from this discussion that for 𝐺 ∊
Cond(Grp), the abstract group 𝐺(∗) and the underlying group of 𝐺top match.

8.10 Recollection [10, §7.1]. For a topological group 𝐺, let 𝐹𝐺 ∶ 𝐺-Set → Set denote the
forgetful functor from sets with a continuous action by 𝐺 to abstract sets. We say 𝐺 is Noohi if
the canonical continuous map

𝐺 → Aut(𝐹𝐺)

is a homeomorphism of groups. Here, Aut(𝐹𝐺) is topologized using the compact-open topology
on groups Aut(𝐹𝐺(𝑀)) for𝑀 ∊ 𝐺-Set.
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This type of a topological group is useful when one wants to generalize Galois theory of
Grothendieck to allow infinite fibers (cf. the “infiniteGalois theory” of [10, §7.2]). This formalism
was used to define the proétale fundamental group πproét1 of a scheme in §7.4 of loc. cit.. The group
πproét1 is Noohi. Similarly, the fundamental group of de Jong in rigid geometry (see [47]) and its
later generalizations (see [2] and [1]) are all Noohi.

Noohi groups can also be characterized in purely topological terms as Hausdorff, Raı̌kov
complete groups such that open subgroups form a fundamental system of neighborhoods at 1.

The inclusionGrpNoohi ⊂ Grp(Top) admits a left adjoint (−)Noohi, called “Noohi completion”,
given by

Grp(Top) ∍ 𝐺 ↦ Aut(𝐹𝐺) ∊ Grp
Noohi .

See [52, §2] for this and some other properties of Noohi groups and completions.

We now want to extend Noohi completion to condensed groups.

8.11 Definition. Let 𝐺 ∊ Cond(Grp). We define

𝐺Noohi =
(
𝐺top

)Noohi ∊ GrpNoohi

to be the Noohi completion of 𝐺.

8.12 Theorem. Let 𝑋 be a topologically noetherian scheme and 𝑥̄ → 𝑋 a geometric point. Then
there is a natural isomorphism

(πcond1 (𝑋, 𝑥̄)top)Noohi ≅ πproét1 (𝑋, 𝑥̄) .

8.13 Remark. For a condensed group 𝐺, one can also define a version of Noohi completion
𝐺Noohi ∊ Cond(Grp) directly as a condensed group without passing through (−)top. More pre-
cisely one can define 𝐺Noohiby the assignment

𝑆 ↦ Aut (Functs(B𝐺, Setult) → Set
Γ∗𝑆,,→ Sh(𝑆)) .

It turns out that the two definitions match, that is, one can check

𝐺Noohi ≅ (𝐺top)Noohi .

We will not need this observation in this article.

The main input that we need is the following:

8.14 Lemma. Let𝐺 be a condensed groupwith condensed classifying animaBG. There is a natural
equivalence of categories

Functs(B𝐺, Setult) → 𝐺top-Set

that is compatible with the forgetful functors to Set.

Proof. We first prove the following: the category Functs(B𝐺, Setult) is equivalent to the category
of pairs (𝑀, 𝛼) where 𝑀 ∊ Set and 𝛼∶ 𝐺 → Aut(𝑀)top is a map of condensed groups. Here,
the topological group Aut(𝑀)top is the group of automorphisms Aut(𝑀) topologized via the
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compact-open topology. A map (𝑀, 𝛼) → (𝑁, 𝛽) is given by a map 𝑓∶ 𝑀 → 𝑁 such that the
square

𝐺 Aut(𝑀)top

Aut(𝑁)top HomTop(𝑀,𝑁)top

𝛼

𝛽 𝑓∗

𝑓∗

commutes (here HomTop(𝑀,𝑁)top is again topologized via the compact-open topology). If this
description holds, the claim follows: by adjunction, a homomorphism 𝐺 → Aut(𝑀)top can be
uniquely identifiedwith a homomorphism𝐺top → Aut(𝑀)top of topological groups and similarly
for𝑁. Despite the fact thatHomTop(𝑀,𝑁)top is not a group, Remark 8.9 shows that the diagram

𝐺top Aut(𝑀)top

Aut(𝑁)top HomTop(𝑀,𝑁)top

𝛼top

𝛽top 𝑓∗

𝑓∗

nevertheless commutes. This shows the desired equivalence with the category of 𝐺top-Set.
The fully faithful functor Functs(B𝐺, Setult) ↪ Functs(B𝐺,Cond(Set)) fits into a cartesian

square

Functs(B𝐺, Setult) Set

Functs(B𝐺,Cond(Set)) Cond(Set),

ev∗

ev∗

where the horizontal arrows are given by pullback along ∗ → B𝐺. Indeed, this follows as the
functors

Functs(−, Setult), Functs(−,Cond(Set))∶ Cond(Ani)op → Cat

are sheaves and ∗ → B𝐺 is a cover in Cond(Ani). Furthermore, applying Functs(−,Cond(Set))
to the Čhech-nerve of ∗ → B𝐺, we get an equivalence

Functs(B𝐺,Cond(Set)) ≃ lim
(
Cond(Set) ⇉ Cond(Set)∕𝐺

→→→ Cond(Set)∕𝐺
)

using that by [80, Corollary 3.20]), for a condensed set 𝐴, there is a natural equivalence of
categories

Functs(𝐴,Cond(Set)) ≃ Cond(Set)∕𝐴.

Explicitly unwinding the descent datum, we see that Functs(B𝐺,Cond(Set)) is equivalent to the
usual category of condensed sets with an action by the condensed group 𝐺. In other words, its
objects are condensed sets 𝐴 together with a map 𝐺 → Aut(𝐴) of condensed groups and the
maps are defined as above. Here Aut(𝐴) is the maximal condensed subgroup of the condensed
monoidHom(𝐴,𝐴) given by the internal hom in Cond(Set). Thus, the proof will be complete if
for a set𝑀, we can show that there is a canonical isomorphism

Aut(𝑀,𝑀) ⥲ Aut(𝑀,𝑀)top .
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But for this, we observe that we have a canonical isomorphism Hom(𝑀,𝑀) ≅ HomTop(𝑀,𝑀)
under which the corresponding condensed subgroups of automorphisms agree. This completes
the proof.

Proof of Theorem 8.12. We may assume that 𝑋, and therefore Πcond
∞ (𝑋), is connected by Corol-

lary 4.19 as 𝑋 has finitely many irreducible components. It follows from Theorem 8.5 that we
have a chain of natural equivalences

Functs(Bπcond1 (𝑋, 𝑥̄), Setult) ≃ Functs(Πcond
1 (𝑋), Setult)

≃ Functs(Πcond
∞ (𝑋), Setult)

≃ wLoc(𝑋)≤0
≃ πproét1 (𝑋, 𝑥̄)-Set

that is compatible with the forgetful functors to Set. Here, the last equivalence is due to the
definition of πproét1 (𝑋, 𝑥̄) in [10, Definition 7.4.2] coupled with Lemmas 7.3.9 and 7.4.1 in loc. cit..
Thus, Lemma 8.14 shows that there is a natural equivalence

πcond1 (𝑋, 𝑥̄)top-Set ≃ πproét1 (𝑋, 𝑥̄)-Set .

In particular, both groups have the same Noohi completion. Since πproét1 (𝑋, 𝑥̄) is Noohi complete
by [10, Theorem 7.2.5], the claim follows.
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A Rings of continuous functions & Čech–Stone compactifi-
cation

by Bogdan Zavyalov
The main goal of this appendix is to give a self-contained account for the identification of the

Čech–Stone compactification of a topological space 𝑋 with the maximal spectrum of the ring of
continuous functions on 𝑋.

This identification has already been established in [18] using the notion of pm-ring. In this
appendix, we follow the ideas already present in [18]. We do not claim originality of any results
in this appendix. Instead, we hope that this appendix gives a self-contained and reader-friendly
exposition of some ideas from [18] and [27].

Throughout this appendix, we denote by 𝐑 (resp. 𝐂) the topological ring of real numbers
(resp. complex numbers) with the Euclidean topology. For a topological space 𝑋, we denote by
C(𝑋,𝐑) (resp. C(𝑋, 𝐂)) the ring of real-valued (resp. complex-valued) continuous functions on
𝑋.

Many of the results in this appendix also appear in [78; 79; 77].

A.1 Main constructions
The main goal of this subsection is to introduce some constructions that will be used in the rest
of this appendix. We also study their basic properties.

A.1 Construction. Let 𝑋 be a topological space.

(1) For each point 𝑥 ∊ 𝑋, we define the evaluation functional ev𝑥 ∶ C(𝑋,𝐑) → 𝐑 by the formula

ev𝑥(𝑓) ≔ 𝑓(𝑥) .

(2) We define the map
𝜄𝑋 ∶ 𝑋 → Spec

(
C(𝑋,𝐑)

)

to be the unique map that sends each point 𝑥 ∊ 𝑋 to ker(ev𝑥).

A.2 Remark. The map 𝜄𝑋 is clearly functorial in 𝑋.

For our later convenience, we record some basic properties of 𝜄𝑋 .

A.3 Lemma. Let 𝑋 be a topological space.

(1) The natural map 𝜄𝑋 ∶ 𝑋 → Spec
(
C(𝑋,𝐑)

)
is continuous;

(2) the image of 𝜄𝑋(𝑋) ⊂ Spec
(
C(𝑋,𝐑)

)
is a dense subset;

(3) the map 𝜄𝑋 factors throughMSpec
(
C(𝑋,𝐑)

)
.

Proof. In order to see the first claim, it suffices to show that 𝜄−1𝑋
(
D(𝑓)

)
is an open subset of 𝑋 for

every 𝑓 ∊ C(𝑋,𝐑). This follows immediately from the formula 𝜄−1𝑋
(
D(𝑓)

)
= {𝑥 ∊ 𝑋 | 𝑓(𝑥) ≠ 0}

and the assumption that 𝑓 is continuous.
Nowwe prove the second claim. Let𝑍 ≔ V(𝐼) ⊂ Spec

(
C(𝑋,𝐑)

)
be a closed subset containing

𝜄𝑋(𝑋). Then the construction of 𝜄𝑋 implies that, for every 𝑓 ∊ 𝐼, we have 0 = ev𝑥(𝑓) = 𝑓(𝑥) for
all 𝑥 ∊ 𝑋. Thus 𝑓 = 0 and so we conclude that 𝑍 = V(0) = Spec

(
C(𝑋,𝐑)

)
.

72



To justify the last claim, it is enough to prove that ker(ev𝑥) is a maximal ideal for every 𝑥 ∊ 𝑋.
For this, it suffices to show that ev𝑥 is surjective. Fix a constant 𝑐 ∊ 𝐑 and denote by 𝑐 the
corresponding constant function on 𝑋. Then the surjectivity of ev𝑥 follows immediately from
the observation that ev𝑥(𝑐) = 𝑐.

A.4 Remark. In what follows, we slightly abuse the notation and also denote by 𝜄𝑋 the natural
morphism 𝜄𝑋 ∶ 𝑋 → MSpec

(
C(𝑋,𝐑)

)
.

We will show later in this appendix that 𝜄𝑋 is a homeomorphism when 𝑋 is a compact Haus-
dorff topological space.

A.5 Warning. The map 𝜄𝑋 is neither injective nor surjective for a general topological space 𝑋.

A.2 pm-rings
In this subsection, we introduce the notion of pm-rings following [18]. Then we show that the
natural inclusion MSpec(𝐴) ↪ Spec(𝐴) admits a continuous retract for a pm-ring 𝐴. As a
consequence, we deduce thatMSpec(𝐴) is a compact Hausdorff space for any pm-ring 𝐴. We
will use the results of this section to relate the Čech–Stone compactification of an arbitrary
topological space 𝑋 to the maximal spectrum of the ring of continuous functions on 𝑋.

A.6 Definition [18]. A ring 𝐴 is a pm-ring if every prime ideal 𝔭 ⊂ 𝐴 is contained in a unique
maximal ideal 𝔭 ⊂ 𝔪𝔭 ⊂ 𝐴.

A.7 Definition. For a pm-ring 𝐴, we define the retract map 𝑟𝐴 ∶ Spec(𝐴) → MSpec(𝐴) as the
unique map that sends a point 𝑥 to its unique closed specialization (equivalently, it sends each
prime ideal 𝔭 to the unique maximal ideal 𝔪𝔭 containing 𝔭). When there is no possibility of
confusion, we will denote the map 𝑟𝐴 simply by 𝑟.

A.8 Remark. Below, we present a proof that 𝑟𝐴 is always continuous for a pm-ring 𝐴. This
beautiful proof is due to De Marco and Orsatti. However, we want to emphasize that, a priori, it
is absolutely not clear whether the map 𝑟𝐴 has to be continuous or not. In fact, the author finds
it quite surprising and is not aware of any one-line proof of this fact.

A.9 Theorem [18, Theorem 1.2]. Let𝐴 be a pm-ring. Then 𝑟∶ Spec(𝐴) → MSpec(𝐴) is a contin-
uous retract of the natural embedding 𝜄 ∶ MSpec(𝐴) ↪ Spec(𝐴).

In fact, [18, Theorem 1.2] shows that 𝐴 is a pm-ring if and only if 𝜄 admits a continuous
retract (and 𝑟 is the unique continuous retract in this case). However, since we never need the
other direction and it is significantly easier, we decided not to include it in this exposition.

Proof. Throughout this proof, we denote by VSpec(𝐼) ⊂ Spec(𝐴) the vanishing locus of an ideal 𝐼
inside Spec(𝐴), and byVMax(𝐼) ≔ VSpec(𝐼)∩MSpec(𝐴) the vanishing locus of 𝐼 insideMSpec(𝐴).

By construction, we know that 𝑟◦𝜄 = id. So the only thing we really need to show is that the
map 𝑟 is continuous. We fix a closed subset 𝑍 ⊂ MSpec(𝐴) and define

𝐼 ≔
⋂

𝔪∊𝑍
𝔪 and 𝐽 ≔

⋂

𝔭⊂𝐴
𝑟(𝔭)∊𝑍

𝔭 .

For the purpose of proving continuity of 𝑟, it is enough to show that 𝑟−1(𝑍) = VSpec(𝐽).
Clearly, 𝑟−1(𝑍) ⊂ VSpec(𝐽). Therefore, after unravelling all the definitions, we see that it suffices
to show that, for any prime ideal 𝔭 ⊂ 𝐴 such that 𝐽 ⊂ 𝔭, we have 𝑟(𝔭) ∊ 𝑍.
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Step 1: We show 𝑍 = VMax(𝐼). Since 𝑍 is closed, we know that 𝑍 = VMax(𝐾) for some ideal
𝐾 ⊂ 𝐴. By construction, for any 𝔪 ∊ 𝑍, we have 𝐾 ⊂ 𝔪. In particular, 𝐾 ⊂ 𝐼 =

⋂
𝔪∊𝑍𝔪.

Thus, VMax(𝐼) ⊂ VMax(𝐾) = 𝑍. On the other hand, the definition of 𝐼 implies that 𝑍 ⊂ VMax(𝐼).
Therefore, we conclude that

VMax(𝐼) ⊂ VMax(𝐾) = 𝑍 ⊂ VMax(𝐼) .

This implies that VMax(𝐼) = 𝑍.
Now we set𝑀 ≔

⋃
𝔪∊𝑍𝔪. We note that 1 ∉ 𝑀, so𝑀 ≠ 𝐴. We warn the reader that the set

𝑀 is not generally an ideal in 𝐴.
Step 2: Let 𝔭 ⊂ 𝑀 be a prime ideal in 𝐴. Then 𝑟(𝔭) ∊ 𝑍. Since 𝔭 ⊂ 𝑀 and 𝐼 =

⋂
𝔪∊𝑍𝔪, we

conclude that 𝔭 + 𝐼 ⊂ 𝑀 ≠ 𝐴. Thus, we can find a maximal ideal 𝔫 ⊂ 𝐴 such that

𝔭 ⊂ 𝔭 + 𝐼 ⊂ 𝔫 .

Therefore, 𝑟(𝔭) = 𝔫. Since 𝐼 ⊂ 𝔫, Step 1 ensures that 𝔫 ∊ 𝑍. This shows that 𝑟(𝔭) ∊ 𝑍.
Step 3: Let 𝐽 ⊂ 𝔭 be a prime ideal in 𝐴. Then 𝑟(𝔭) ∊ 𝑍. Since each prime ideal is contained

in a unique maximal ideal, it suffices to find a prime ideal 𝔮 ⊂ 𝔭 such that 𝔮 ⊂ 𝑀; then Step 2
implies that 𝑟(𝔭) = 𝑟(𝔮) ∊ 𝑍.

Now we choose any 𝑡 ∊ 𝐴 ∖ 𝔭 and 𝑠 ∊ 𝐴 ∖𝑀. Then 𝑡𝑠 ≠ 0 since otherwise it would imply that

𝑡 ∊
⋂

𝔪∊𝑍
𝔪 = 𝐽 ⊂ 𝔭 .

Hence, the multiplicative system

𝑆 = { 𝑡𝑠 | 𝑡 ∊ 𝐴 ∖ 𝔭 and 𝑠 ∊ 𝐴 ∖ 𝑀 }

does not contain 0. Therefore, the localization 𝐴[𝑆−1] is nonzero. Thus, any maximal ideal in
𝐴[𝑆−1] defines a prime ideal 𝔮 ⊂ 𝐴 disjoint from 𝑆. Since 1 ∊ 𝐴 ∖ 𝔭 and 1 ∊ 𝐴 ∖ 𝑀, we conclude
that 𝔮 ⊂ 𝔭 ∩𝑀, finishing the proof.

A.10 Corollary. Let 𝐴 be a pm-ring. ThenMSpec(𝐴) is a compact Hausdorff space.

Proof. Theorem A.9 constructs a continuous surjective map 𝑟∶ Spec(𝐴) → MSpec(𝐴). Since
Spec(𝐴) is quasicompact and images of quasicompact spaces are quasicompact, MSpec(𝐴) is
also quasicompact.

Now we show thatMSpec(𝐴) is Hausdorff. First, [STK, Tag 0904] implies that it suffices to
show that, for any two closed points 𝑥, 𝑦 ∊ Spec(𝐴), there does not exist a point 𝑧 ∊ Spec(𝐴)
which specializes to both 𝑥 and 𝑦. This follows immediately from the fact that every point of
Spec(𝐴) specializes to a unique closed point.

A.11 Definition. Let 𝑓∶ 𝐴 → 𝐵 be a homomorphism between pm-rings. We define the associ-
ated morphism of maximal spectraMSpec(𝑓)∶ MSpec(𝐵) → MSpec(𝐴) as the composition

MSpec(𝐵) Spec(𝐵) Spec(𝐴) MSpec(𝐴) .𝜄𝐵 Spec(𝑓) 𝑟𝐴

A.12 Warning. In general, for a ring homomorphism 𝐴 → 𝐵, the induced map of spectra
Spec(𝑓)∶ Spec(𝐵) → Spec(𝐴) does not send MSpec(𝐵) to MSpec(𝐴). This does not even hold
for a general homomorphism of pm-rings. Indeed, consider a rank 2 valuation ring 𝑉 with the
fraction field 𝐾 and a rank-1 localization 𝒪. Then the map Spec(𝒪) → Spec(𝑉), induced by the
inclusion 𝑉 ⊂ 𝒪, sends the closed point of Spec(𝒪) to a non-closed point of Spec(𝑉).
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A.3 Rings of continuous functions
The main goal of this section is to show that the rings of continuous functions C(𝑋,𝐑) and
C(𝑋, 𝐂) are pm-rings for any topological space 𝑋. This will be the crucial ingredient in showing
that the Čech–Stone compactification 𝛽𝑋 is homeomorphic toMSpec

(
C(𝑋,𝐑)

)
.

We do not claim originality of any results of this subsection. In fact, our presentation that
C(𝑋,𝐑) is a pm-ring follows [27, Theorem 2.11] quite closely. The case of C(𝑋, 𝐂) seems to be
missing in [27].

Throughout the section, we fix a topological space 𝑋.

A.13 Definition. Let 𝑓 ∊ C(𝑋,𝐑) be a continuous function. Its vanishing locus is the set

V𝑋(𝑓) ≔ { 𝑥 ∊ 𝑋 | 𝑓(𝑥) = 0 } .

A.14 Definition. For a subset 𝑆 ⊂ C(𝑋,𝐑), the collection of its zero sets is the subset

V𝑋[𝑆] ≔ {V𝑋(𝑓) | 𝑓 ∊ 𝑆} ⊂ Sub(𝑋)

of the set of all vanishing loci of elements in 𝑆.7 For brevity, we put V𝑋[𝑋] ≔ V𝑋[C(𝑋,𝐑)] the
set of all vanishing loci of continuous functions on 𝑋.

A.15 Lemma [27, Theorem 2.3]. Let 𝐼 ⊂ C(𝑋,𝐑) be an ideal and let 𝑍1, 𝑍2 ∊ V𝑋[𝐼]. Then

(1) 𝑍1 ∩ 𝑍2 ∊ V𝑋[𝐼];

(2) if 𝑍 ∊ V𝑋[𝑋] and 𝑍1 ⊂ 𝑍, then 𝑍 ∊ V𝑋[𝐼].

Proof. Let 𝑍1 = V𝑋(𝑓1), 𝑍2 = V𝑋(𝑓1), and 𝑍 = V𝑋(𝑓) for 𝑓1, 𝑓2 ∊ 𝐼 and 𝑓 ∊ C(𝑋,𝐑). The first
claim follows immediately from the observation that

𝑍1 ∩ 𝑍2 = V𝑋(𝑓1) ∩ V𝑋(𝑓2) = V𝑋(𝑓21 + 𝑓22) ∊ V𝑋[𝐼].

The second claim follows immediately from the observation that

𝑍 = 𝑍1 ∪ 𝑍 = V𝑋(𝑓1) ∪ V𝑋(𝑓) = V𝑋(𝑓1𝑓) ∊ V𝑋[𝐼].

A.16 Definition. An ideal 𝐼 ⊂ C(𝑋,𝐑) is a 𝑧𝑠-ideal if V𝑋(𝑓) ∊ V𝑋[𝐼] implies 𝑓 ∊ 𝐼.

A.17 Remark. Usually, 𝑧𝑠-ideals are called 𝑧-ideals. We prefer to avoid this name for obvious
reasons.

A.18 Theorem [27, Theorem 2.5]. Let𝔪 ⊂ C(𝑋,𝐑) be a maximal ideal. Then𝔪 is a 𝑧𝑠-ideal.

Proof. We denote by 𝐼𝔪 ⊂ C(𝑋,𝐑) the subset of continuous functions whose vanishing locus is
equal to a vanishing locus of a function in𝔪, i.e.,

(A.19) 𝐼𝔪 = {𝑓 ∊ C(𝑋,𝐑) | V𝑋(𝑓) ∊ V𝑋[𝔪]} .

We first show that ℐ(V𝑋[𝔪]) is an ideal.
Now Lemma A.15 implies that 𝐼𝔪 is an ideal. We pick continuous functions 𝑓, 𝑔 ∊ 𝐼𝔪 and

ℎ ∊ C(𝑋,𝐑) and wish to show that 𝑓 + 𝑔 ∊ 𝐼𝔪 and 𝑓ℎ ∊ 𝐼𝔪. The former claim follows from the
7We denote by Sub(𝑋) the set of all subsets of 𝑋.
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observation V𝑋(𝑓 + 𝑔) ⊃ V𝑋(𝑓) ∩ V𝑋(𝑔) and Lemma A.15, while the latter claim follows from
the observation V𝑋(𝑓ℎ) ⊃ V𝑋(𝑓) and Lemma A.15.

Now Equation (A.19) implies that, for the purpose of showing that𝔪 is a 𝑧𝑠-ideal, it suffices
to show that𝔪 = 𝐼𝔪. Clearly, we have𝔪 ⊂ 𝐼𝔪. Therefore, the fact that𝔪 is a maximal ideal
implies that, in order to show that𝔪 = 𝐼𝔪, it suffices to show that 1 ∉ 𝐼𝔪. This is equivalent to
showing that ∅ ∉ V𝑋[𝔪]. For this note that any 𝑓 ∊ 𝔪 is not invertible, therefore ∅ ≠ V𝑋(𝑓).
This finishes the proof.

A.20 Lemma. Let 𝐼, 𝐽 ⊂ C(𝑋,𝐑) be two 𝑧𝑠-ideals. Then 𝐼 is a radical ideal and 𝐼 ∩ 𝐽 is a 𝑧𝑠-ideal.

Proof. We start with the first claim. Suppose 𝑓 ∊ rad(𝐼), so 𝑓𝑛 ∊ 𝐼 for some 𝑛. Then we note that
V𝑋(𝑓) = V𝑋(𝑓𝑛). So the definition of a 𝑧𝑠-ideal implies that 𝑓 ∊ 𝐼. In other words, 𝐼 is radical.

Nowwe deal with the second claim.We first claim thatV𝑋[𝐼 ∩𝐽] = V𝑋[𝐼]∩V𝑋[𝐽]. We always
have an inclusionV𝑋[𝐼∩𝐽] ⊂ V𝑋[𝐼]∩V𝑋[𝐽], so it suffices to show thatV𝑋[𝐼]∩V𝑋[𝐽] ⊂ V𝑋[𝐼∩𝐽].
Pick 𝑍 ∊ V𝑋[𝐼] ∩ V𝑋[𝐽]. By definition, this means that there are elements 𝑓 ∊ 𝐼 and 𝑔 ∊ 𝐽 such
that 𝑍 = V𝑋(𝑓) = V𝑋(𝑔). Since 𝐽 is a 𝑧𝑠-ideal, it implies that 𝑓 ∊ 𝐽. Therefore, 𝑓 ∊ 𝐼 ∩ 𝐽 and,
hence, 𝑍 ∊ V𝑋[𝐼 ∩ 𝐽].

Now let 𝑓 ∊ C(𝑋,𝐑) be a continuous function such that V𝑋(𝑓) ∊ V𝑋[𝐼 ∩ 𝐽] = V𝑋[𝐼] ∩ V𝑋[𝐽].
Then we use the fact that both 𝐼 and 𝐽 are 𝑧𝑠-ideals to conclude that 𝑓 ∊ 𝐼 ∩ 𝐽, i.e., 𝐼 ∩ 𝐽 is a
𝑧𝑠-ideal.

A.21 Remark. Lemma A.20 implies that the ideal (𝑥) ∊ C(𝐑,𝐑) is not a 𝑧𝑠-ideal.

A.22 Lemma [27, Theorem 2.9]. Let 𝐼 ⊂ C(𝑋,𝐑) be a 𝑧𝑠-ideal. Then the following are equivalent:

(1) The ideal 𝐼 is prime;

(2) The ideal 𝐼 contains a prime ideal;

(3) For any 𝑓, 𝑔 ∊ C(𝑋,𝐑) such that 𝑓𝑔 = 0, we have 𝑓 ∊ 𝐼 or 𝑔 ∊ 𝐼;

(4) For every 𝑓 ∊ C(𝑋,𝐑), there is a subset 𝑍 ⊂ 𝑋 such that 𝑍 ∊ V𝑋[𝐼] and 𝑓|𝑍 does not change
its sign.

Proof. The implications (1)⇒(2) and (2)⇒(3) are trivial.
Now we show (3)⇒(4). We start by considering the continuous functions 𝑓+ ≔ max(𝑓, 0)

and 𝑓− ≔ min(𝑓, 0). Then clearly we have

𝑓+ ⋅ 𝑓− = 0 ,

so we have 𝑓+ ∊ 𝐼 or 𝑓− ∊ 𝐼. Suppose 𝑓+ ∊ 𝐼 (the other case is similar), then

{𝑥 ∊ 𝑋 | 𝑓(𝑥) ≤ 0} = V𝑋(𝑓+) ∊ V𝑋[𝐼] .

Now we show (4)⇒(1). We pick two continuous functions 𝑓, 𝑔 ∊ C(𝑋,𝐑) such that 𝑓𝑔 ∊ 𝐼
and wish to show that 𝑓 ∊ 𝐼 or 𝑔 ∊ 𝐼. For this, we consider the continuous function ℎ = |𝑓|− |𝑔|.
Our assumption implies that there is a zero set 𝑍 ∊ V𝑋[𝐼] such that ℎ|𝑍 is, say, nonnegative (the
other case is similar). Note that if 𝑓(𝑥) = 0 and 𝑥 ∊ 𝑍, then ℎ(𝑥) = −|𝑔(𝑥)| ≥ 0. Hence, ℎ(𝑥) =
𝑔(𝑥) = 0 for such 𝑥 ∊ 𝑋. So we conclude that 𝑍 ∩ V𝑋(𝑓𝑔) = 𝑍 ∩ (V𝑋(𝑓) ∪ V𝑋(𝑔)) = 𝑍 ∩ V𝑋(𝑔).
Therefore, we see that V𝑋(𝑔) ∊ V𝑋[𝐼] by virtue of Lemma A.15 and the following sequence of
inclusions:

V𝑋(𝑔) ⊃ 𝑍 ∩ V𝑋(𝑔) = 𝑍 ∩ V𝑋(𝑓𝑔)
Therefore, we conclude that 𝑔 ∊ 𝐼 since 𝐼 is a 𝑧𝑠-ideal.
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We are almost ready to show that C(𝑋,𝐑) is a pm-ring. We only need the following abstract
commutative algebra lemma.

A.23 Lemma. Let 𝑅 be a ring and let 𝔭1, 𝔭2 ⊂ 𝑅 be prime ideals such that neither of them is
contained in the other. Then 𝔭1 ∩ 𝔭2 is not a prime ideal.

Proof. Choose 𝑡 ∊ 𝔭1 ∖ 𝔭2 and 𝑠 ∊ 𝔭2 ∖ 𝔭1. Then 𝑠𝑡 ∊ 𝔭1 ∩ 𝔭2 but 𝑠 ∉ 𝔭1 ∩ 𝔭2 and 𝑡 ∉ 𝔭1 ∩ 𝔭2.

A.24 Theorem [27, Theorem 2.11]. The ring C(𝑋,𝐑) is a pm-ring.

Proof. Every prime ideal 𝔭 ⊂ C(𝑋,𝐑) is contained in some maximal ideal, so it suffices to show
that 𝔭 cannot be contained in two different maximal ideals𝔪1 and𝔪2. We set 𝐼 ≔ 𝔪1 ∩ 𝔪2.
Then Theorem A.18 and Lemma A.20 imply that 𝐼 is a 𝑧𝑠-ideal. By construction, we have an
inclusion 𝔭 ⊂ 𝐼. Therefore, LemmaA.22 ensures that 𝐼 is a prime ideal. However, this contradicts
Lemma A.23. Hence, there is only one maximal ideal containing 𝔭.

A.25 Corollary. Let 𝑋 be a topological space. Then MSpec
(
C(𝑋,𝐑)

)
is a compact Hausdorff

topological space.

Proof. This follows directly from Theorem A.24 and Corollary A.10.

We now address the fact that C(𝑋, 𝐂) is a pm-ring.

A.26 Lemma. The natural map C(𝑋,𝐑) ⊗𝐑 𝐂 → C(𝑋,𝐂) is an isomorphism.

Proof. First, we note that the question is equivalent to showing that the natural map C(𝑋,𝐑) ⊕
𝑖 ⋅ C(𝑋,𝐑) → C(𝑋, 𝐂) is an isomorphism. In other words, we need to show that any continuous
function 𝑓 ∊ C(𝑋, 𝐂) can be uniquely written as 𝑓 = 𝑔 + 𝑖 ⋅ ℎ with 𝑔, ℎ ∊ C(𝑋,𝐑). Uniqueness is
clear. To see existence, we note that 𝑓 = Re(𝑓) + 𝑖 ⋅ Im(𝑓).

A.27 Lemma. The natural map Spec(C(𝑋, 𝐂)) → Spec(C(𝑋,𝐑)) restricts to a bijection

MSpec(C(𝑋, 𝐂)) → MSpec(C(𝑋,𝐑)).

Proof. By Lemma A.26, C(𝑋,𝐑) → C(𝑋, 𝐂) is a finite ring extension and thus Spec(C(𝑋, 𝐂)) →
Spec(C(𝑋,𝐑)) maps closed points to closed points. To show that it restricts to a bijection on
closed points, it suffices to see that for every maximal ideal𝔪 ⊂ C(𝑋,𝐑) with residue field 𝑘𝔪,
the tensor product 𝑘𝔪 ⊗C(𝑋,𝐑) C(𝑋, 𝐂) is a field. By Lemma A.26, this is equivalent to showing
that 𝑘𝔪⊗𝐑 𝐂 is a field. For this it suffices to show that the equation 𝑋2 +1 = 0 has no solutions
in 𝑘𝔪. In other words, we need to show that there are no continuous functions 𝑓 ∊ C(𝑋,𝐑) and
𝑔 ∊ 𝔪 such that 𝑓2 = −1 + 𝑔. Suppose that such functions exist. Then we note that 𝑔 is not
an invertible function since it lies in a maximal ideal. Therefore, there is a point 𝑥 ∊ 𝑋 such
that 𝑔(𝑥) = 0. Thus, we see that 𝑓(𝑥)2 = −1 + 𝑔(𝑥) = −1. Contradiction, so no such functions
exist.

A.28 Corollary. The ring C(𝑋, 𝐂) is a pm-ring.

Proof. Let𝔓 ⊂ C(𝑋, 𝐂) be a prime ideal and let𝔐 ⊂ C(𝑋,𝐂) be a maximal ideal containing𝔓.
We put 𝔭 ≔ 𝔓 ∩ C(𝑋,𝐑) and we set𝔪 ⊂ C(𝑋,𝐑) to be the unique maximal ideal containing 𝔭.
Since Spec

(
C(𝑋, 𝐂)

)
→ Spec

(
C(𝑋,𝐑)

)
is a finite morphism (see Lemma A.26), it sends closed

points to closed points. So we conclude that𝔐 ∩ C(𝑋,𝐑) = 𝔪. Thus the claim follows from
Lemma A.27.
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A.29 Corollary. The canonical mapMSpec(C(𝑋, 𝐂)) → MSpec(C(𝑋,𝐑)) is a homeomorphism.

Proof. By Corollaries A.10, A.25, and A.28 source and target are both compact Hausdorff spaces,
so the claim follows from Lemma A.27.

A.4 Čech–Stone compactification via algebraic geometry
In this subsection, we show that the topological space MSpec(C(𝑋,𝐑)) satisfies the universal
property of the Čech–Stone for any topological space 𝑋; this gives a new proof of the existence
of the Čech–Stone compactification and automatically identifies it withMSpec(C(𝑋,𝐑)).

A.30 Definition. The Čech–Stone compactification of a topological space𝑋 is the pair (β(𝑋), 𝑖𝑋)
of a compact Hausdorff space β(𝑋) and a continuous morphism 𝑖𝑋 ∶ 𝑋 → β(𝑋) such that, for
every other compact Hausdorff space 𝑌 with a continuous map 𝑓∶ 𝑋 → 𝑌, there is a unique
continuous map β(𝑓)∶ β(𝑋) → 𝑌 such that 𝑓 = β(𝑓)◦𝑖𝑋 .

A.31 Remark. Clearly, the Čech–Stone compactification of 𝑋 is unique up to a unique homeo-
morphism if it exists.

We recall (see Construction A.1) that, for every topological space 𝑋, we have the natural
morphism 𝜄𝑋 ∶ 𝑋 → MSpec(C(𝑋,𝐑)). Our goal is to show that the pair

(
MSpec

(
C(𝑋,𝐑)

)
, 𝜄𝑋

)

satisfies the universal property of the Čech–Stone compactification.

A.32 Theorem. Let 𝑋 be a compact Hausdorff space. Then the natural map

𝜄𝑋 ∶ 𝑋 → MSpec(C(𝑋,𝐑))≅ MSpec(C(𝑋, 𝐂))

is a homeomorphism.

Proof. The homeomorphismMSpec(C(𝑋,𝐑)) ≅ MSpec(C(𝑋, 𝐂)) is simply Corollary A.29. Thus
we only prove that 𝜄𝑋 is an isomorphism.

Step 1: 𝜄𝑋 is injective. To show injectivity of 𝜄𝑋 , it suffices to show that any two points 𝑥, 𝑦 ∊
𝑋 can be separated by a continuous function 𝑓∶ 𝑋 → 𝐑. More precisely, we need to find a
continuous function 𝑓∶ 𝑋 → 𝐑 such that 𝑓(𝑥) = 0 and 𝑓(𝑦) ≠ 0. Such a function exists by
Urysohn’s Lemma [64, Theorem 33.1].

Step 2: 𝜄𝑋 has dense image. This follows directly from Lemma A.3.
Step 3: 𝜄𝑋 is a homeomorphism. Since 𝑋 is quasi-compact, we conclude that its image 𝜄𝑋(𝑋) is

also quasi-compact. SinceMSpec(C(𝑋,𝐑)) is Hausdorff (see Corollary A.25), we conclude that
𝜄𝑋(𝑋) is closed. Since 𝜄𝑋(𝑋) ⊂ MSpec(C(𝑋,𝐑)), we conclude that 𝜄𝑋must be surjective. Therefore,
𝜄𝑋 is a bijective continuous map between compact Hausdorff spaces (see Corollary A.25), so it is
a homeomorphism by virtue of [STK, Tag 08YE].

A.33 Lemma. Let 𝑓∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Then there is a unique
continuous map 𝑓∶ MSpec

(
C(𝑋,𝐑)

)
→ MSpec

(
C(𝑌,𝐑)

)
that makes the square

𝑋 𝑌

MSpec
(
C(𝑋,𝐑)

)
MSpec

(
C(𝑌,𝐑)

)

𝑓

𝜄𝑋 𝜄𝑌

𝑓

commute.
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Proof. First, we note that 𝜄𝑋(𝑋) ⊂ MSpec
(
C(𝑋,𝐑)

)
is dense by Lemma A.3. Therefore, 𝑓 is

unique if exists. For the existence, we denote by 𝑓∗ ∶ C(𝑌,𝐑) → C(𝑋,𝐑) the natural pullback
homomorphism. Then𝑓 = MSpec(𝑓∗) does the job (see TheoremA.24 andDefinitionA.11).

A.34 Theorem. Let𝑋 be a topological space, let𝑌 be a compact Hausdorff space, and let 𝑓∶ 𝑋 →
𝑌 be a continuous map. Then there is a unique continuous map 𝑓∶ MSpec

(
C(𝑋,𝐑)

)
→ 𝑌 that

makes the triangle

𝑋 𝑌

MSpec
(
C(𝑋,𝐑)

)

𝑓

𝜄𝑋
𝑓

commute.

Proof. This follows immediately from Lemma A.33 and Theorem A.32.

A.35 Corollary. Let 𝑋 be a topological space. Then the Čech–Stone compactification (β(𝑋), 𝑖𝑋) of
𝑋 exists and β(𝑋) ≃ MSpec

(
C(𝑋,𝐑)

)
.

Proof. This follows immediately from Theorem A.34 and Remark A.31.

B Galois groups of function fields
It is well-known that there is an isomorphism of profinite groups

F̂r𝐂 ≃ Gal𝐂(𝑇)

between the free profinite group on the underlying set of 𝐂 and the absolute Galois group of
the function field 𝐂(𝑇). See [19; 38]. Moreover, it seems to be folklore that this isomorphism
can be chosen so that the free profinite group generated by an element 𝑎 ∊ 𝐂 corresponds to
a decomposition group of the prime (𝑇 − 𝑎). See [46, §1.8]. The purpose of this appendix is to
record a proof of this folklore statement. Implicitly this is also shown in [50] and we do not claim
originality of any of the results in this appendix.

B.1 Notation. Throughout this section we fix an algebraic closure 𝐾 of the function field 𝐂(𝑇).
We write Gal𝐂(𝑇) ≔ Gal(𝐾∕𝐂(𝑇)).

B.2 Recollection. Write 𝐂[𝑇] ⊂ 𝐾 for the integral closure of 𝐂[𝑇] in 𝐾. For any 𝑎 ∊ 𝐂 a choice
of prime ideal 𝑎̄ in 𝐂[𝑇] lying over (𝑇−𝑎) then determines a decomposition groupD𝑎̄ ⊂ Gal𝐂(𝑇).
Moreover, if 𝑎̄′ is another choice of prime above (𝑇 − 𝑎), then D𝑎̄′ is conjugate to D𝑎̄.

Our goal is to prove the following result, which is a slight refinement of [19, Theorem 2] for
𝐶 = 𝐂.

B.3 Theorem. There is an isomorphism of profinite groups

F̂r𝐂 → Gal𝐂(𝑡)

such that for each 𝑎 ∊ 𝐂 the image of 𝐙(𝑎) under this isomorphism is the decomposition groupD𝑎̄|𝑎
of a prime 𝑎̄ lying over (𝑇 − 𝑎).
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B.4 Definition. Let𝑀 be a set. Write Σ for the system of finite subsets 𝑆 ⊂ 𝑀 partially ordered
by inclusion. Let ((𝐺𝑆)𝑆∊Σ, (𝜌𝑇𝑆 )𝑆⊂𝑇) be an inverse system of profinite groups with limit 𝐺𝑀 ≔
lim𝑆∊Σ 𝐺𝑆 and write 𝜌𝑀𝑆 ∶ 𝐺𝑀 → 𝐺𝑆 for the canonical projection. Let 𝑁 be either the whole of
𝑀, or an element of Σ.

(1) We say that a function 𝜑∶ 𝑁 → 𝐺𝑁 is adapted if 𝜌𝑁𝑆 (𝜑(𝑛)) = 1 for all finite subsets 𝑆 ⊂ 𝑁
and all 𝑛 ∉ 𝑆.

(2) We say that a function 𝜑∶ 𝑁 → 𝐺𝑁 is an adapted basis if 𝜑 is adapted and if the map
F̂r𝑁 → 𝐺𝑁 induced by 𝜑 is an isomorphism.

(3) We say that a system ℬ = (ℬ𝑆)𝑆∊Σ of sets of functions ℬ𝑆 ⊂ Hom(𝑆, 𝐺𝑆) is a system of
adapted bases if the following conditions hold.

(a) For each 𝑆 ∊ Σ, ℬ𝑆 ⊂ Hom(𝑆, 𝐺𝑆) =
∏

𝑆 𝐺𝑆 is a nonempty closed subset consisting of
adapted bases.

(b) For each 𝑆 ⊂ 𝑇 ∊ Σ, and each 𝜑 ∊ ℬ𝑇 , the restriction 𝑆 ⊂ 𝑇
𝜑
,→ 𝐺𝑇

𝜌𝑇𝑆,,→ 𝐺𝑆 is an element
of ℬ𝑆 .

B.5 Proposition. Let𝑀 be a set. Write Σ for the poset of finite subsets 𝑆 ⊂ 𝑀 partially ordered by
inclusion. Let ((𝐺𝑆)𝑆∊Σ, (𝜌𝑇𝑆 )𝑆⊂𝑇) be an inverse systemof profinite groupswith limit𝐺𝑀 ≔ lim𝑆∊Σ 𝐺𝑆
and write 𝜌𝑀𝑆 ∶ 𝐺𝑀 → 𝐺𝑆 for the canonical projection. Let ℬ be a system of adapted bases. If all
the transition maps 𝜌𝑇𝑆 ∶ 𝐺𝑇 → 𝐺𝑆 are surjective, then there exists an adapted basis𝑀 → 𝐺𝑀 such
that for each 𝑆 ∊ Σ, the restriction

𝑆 ⊂ 𝑀 → 𝐺𝑀
𝜌𝑀𝑆,,,→ 𝐺𝑆

is a basis contained inℬ𝑆 .

Proof. In [19, Theorem 1], Douady proved the above claim in the case where ℬ is the system of
adapted bases consisting of ℬ𝑆 the set of all adapted bases 𝑆 → 𝐺𝑆 . However, the argument he
gives actually only uses the axiomatic of a general system of adapted bases in the above sense.

We will use the following lemma:

B.6 Lemma. Let 𝐺 be a profinite group and let 𝐻,𝐻′ ⊂ 𝐺 be closed subgroups. Let 𝛼∶ 𝐺 → 𝐺′
be a homomorphism of profinite groups. Let

𝑀 ≔ { 𝑔 ∊ 𝐺 | 𝛼(𝑔−1)𝛼(𝐻)𝛼(𝑔) = 𝛼(𝐻′) } .

Then𝑀 is closed in 𝐺.

Proof. We first consider the set

𝑀′ ≔ { 𝑔 ∊ 𝐺 | 𝛼(𝑔−1)𝛼(𝐻)𝛼(𝑔) ⊂ 𝛼(𝐻′) } .

For ℎ ∊ 𝐻, write
𝑀′
ℎ ≔ { 𝑔 ∊ 𝐺 | 𝛼(𝑔−1ℎ𝑔) ∊ 𝛼(𝐻′) } .
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This is preimage of 𝛼(𝐻′) ⊂ 𝐺′ under the continuous map 𝐺 → 𝐺′ that sends 𝑔 to 𝛼(𝑔−1ℎ𝑔).
Since 𝛼(𝐻′) ⊂ 𝐺′ is closed it follows that𝑀′

ℎ is closed. Since

𝑀′ =
⋂

ℎ∊𝐻
𝑀′
ℎ

it follows that𝑀′ is closed. Now note that the same argument shows that

𝑀′′ ≔ { 𝑔 ∊ 𝐺 | 𝛼(𝑔)𝛼(𝐻′)𝛼(𝑔)−1 ⊂ 𝛼(𝐻) }
is closed. Thus𝑀 = 𝑀′ ∩𝑀′′ is closed.

Proof of Theorem B.3. Our choice of algebraic closure yields an isomorphism

Gal𝐂(𝑇) ⥲ lim
𝑆⊂𝐂 finite

πét1 (𝐀
1 ∖ 𝑆, 𝜂) .

Let uswrite𝐺𝑆 = πét1 (𝐀
1∖𝑆, 𝜂).Wewant to apply Proposition B.5 to this inverse systems of groups

and the system of adapted bases ℬ𝑆 that consists of those maps 𝜑∶ 𝑆 → 𝐺𝑆 that are adapted
bases and for any 𝑠 ∊ 𝑆, the subgroup 𝐙(𝜑(𝑠)) is (conjugate to) a decomposition group at 𝑠. To see
that (ℬ𝑆)𝑆 is a system of adapted bases, we need to show that the conditions Definition B.4-(3.a)
and Definition B.4-(3.b) are satisfied. It is clear that (3.b) is satisfied, so we only check (3.a).
We start by verifying that ℬ𝑆 ⊂ Hom(𝑆, 𝐺𝑆) is closed. To this end, note that the larger subset
ℬall
𝑆 ⊂ Hom(𝑆, 𝐺𝑆), consisting of all adapted bases is closed, see the beginning of the proof of [75,

Proposition 3.4.9]. To conclude, it suffices to see that for all 𝑠 ∊ 𝑆 the subset Σ𝑠 ⊂ 𝐺𝑆 , consisting
of those 𝜎 ∊ 𝐺𝑆 with the property that 𝐙(𝜎) is a decomposition group at 𝑠, is closed. Indeed, in
this case

ℬ𝑆 = ℬall
𝑆 ∩

∏

𝑠∊𝑆
Σ𝑠 ⊂ Hom(𝑆, 𝐺𝑆) =

∏

𝑆
𝐺𝑆 .

is seen to be an intersection of closed subsets, hence itself closed. Fix one decomposition group
D𝑠 at 𝑠. Since D𝑠 ≃ 𝐙, the subset 𝑁 ⊂ D𝑠 of elements that topologically generate D𝑠 is closed.
Now observe that Σ𝑠 agrees with the image of the continuous map

𝑁 × 𝐺𝑆 → 𝐺𝑆; (𝑛, 𝑔) ↦ 𝑔−1𝑛𝑔
and is therefore closed, since the domain is compact. Finally, we need to check that ℬ𝑆 ≠ ∅.
Choose a point 𝑥 ∊ 𝐂 ∖ 𝑆 and an étale path 𝛼∶ 𝜂 ⇝ 𝑥 and consider the isomorphism

𝜓∶ πtop1 (𝐂 ∖ 𝑆, 𝑥)∧ ⥲ πét1 (𝐀
1
𝐂 ∖ 𝑆, 𝑥) ⥲ πét1 (𝐀

1
𝐂 ∖ 𝑆, 𝜂)

obtained from theRiemann existence theoremand conjugationwith𝛼−1. Recall thatπtop1 (𝐂∖𝑆, 𝑥)
is freely generated by simple loops 𝛾𝑠 at 𝑥 around 𝑠, that do not loop around other points in 𝑆.
Then (𝑠 ↦ 𝜓(𝛾𝑠)) is clearly an adapted basis and furthermore 𝜓(𝛾𝑠) generates a decomposition
group at 𝑠. Thus (𝑠 ↦ 𝜓(𝛾𝑠)) ∊ ℬ𝑆 .

By applying Proposition B.5, we obtain an isomorphism𝜑∶ F̂r𝐂 ⥲ Gal𝐂(𝑇) with the property
that for all finite subsets 𝑆 ⊂ 𝐂 and 𝑎 ∊ 𝑆, (𝜌𝐂𝑆 ◦𝜑)(𝑎) generates a decomposition group at 𝑎 in
𝐺𝑆 . We now show that 𝜑(𝑎) generates a decomposition group at 𝑎 in Gal𝐂(𝑇) for any 𝑎 ∊ 𝐂. To
this end, fix one decomposition group D𝑎 ⊂ Gal𝐂(𝑇) of 𝑎. By the above, for every finite subset
𝑆 ⊂ 𝐂 there exists some 𝑔 ∊ Gal𝐂(𝑇) such that 𝐙(𝜑(𝑎)) = 𝑔−1D𝑎𝑔 in 𝐺𝑆 . Now by Lemma B.6 the
set 𝐶𝑆 of all such 𝑔 is closed. Therefore

⋂
𝑆 𝐶𝑆 = lim𝑆 𝐶𝑆 is nonempty as a cofiltered limit of

nonempty compact Hausdorff spaces. By construction, any element 𝑔 ∊
⋂

𝑆 𝐶𝑆 has the property
that 𝐙(𝜑(𝑎)) = 𝑔−1D𝑎𝑔 holds after projecting to 𝐺𝑆 simultaneously for all 𝑆 ⊂ 𝐂 finite. Since
both D𝑎 and 𝐙(𝜑(𝑎)) are closed subgroups of Gal𝐂(𝑇) = lim𝑆⊂𝐂 finite 𝐺𝑆 , this shows that indeed
𝑔−1D𝑎𝑔 = 𝐙(𝜑(𝑎)). In particular, 𝜑(𝑎) generates a decomposition group as desired.
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C A profinite analogue of Quillen’s Theorem B
The goal of this appendix is to prove Theorem C.7, an analogue of Quillen’s Theorem B after
completion at a set of primes. Most of the material here is a part of the sixth author’s thesis [81,
§7.3]. Nevertheless, here themain result is formulated slightly more generally and the exposition
was changed to make it more readable for those less familiar with the theory of internal higher
categories developed by the fifth and sixth authors.

C.1 Quillen’s Theorem B
Given a functor of∞-categories 𝑓∶ 𝒞 → 𝒟, Quillen’s Theorem B [65, Theorem B] gives a way
of calculating the homotopy fiber of the induced map of classifying anima B𝑓∶ B𝒞 → B𝒟. We
begin this appendix by giving a short and model-independent proof of Theorem B that is easier
to generalize than Quillen’s original argument.

C.1 Theorem (Quillen’s Theorem B). Let 𝑓∶ 𝒞 → 𝒟 be a functor of∞-categories such that for
any 𝑑 → 𝑑′ ∊ 𝒟 the induced map

B𝒞∕𝑑 → B𝒞∕𝑑′

is an equivalence. Then for any 𝑑 ∊ 𝒟, the commutative diagram

B𝒞∕𝑑 B𝒞

∗ ≃ B𝒟∕𝑑 B𝒟

B𝑓

is a cartesian square of anima.

The proof rests on the following observation:

C.2 Proposition. Let 𝑝∶ ℱ → 𝒟 be a left fibration with corresponding straightened functor
𝑝̃ ∶ 𝒟 → Ani. If for each map 𝑠 ∶ 𝑑 → 𝑑′ in𝒟, the induced map 𝑝̃(𝑠) is an equivalence, then for
each 𝑑 ∊ 𝒟, the square

ℱ𝑑 Bℱ

∗ B𝒟

B𝑝

𝑑

is cartesian.

Proof. By assumption, 𝑝̃ ∶ 𝒟 → Ani factors through the unit map 𝒟 → B𝒟. Pulling back the
universal left fibration, we thus get a diagram

ℱ𝑑 ℱ ℱ′ Ani∗∕

∗ 𝒟 B𝒟 Ani

⌟
𝑝

⌟ ⌟

𝑑
𝑝̃
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in which all squares are cartesian. Note that since left fibrations are conservative and B𝒟 is an
anima, ℱ′ is an anima. Since B∶ Cat∞ → Ani is locally cartesian (see (5.3)), by applying B to
the middle and left-hand squares, we get another diagram

ℱ𝑑 Bℱ ℱ′

∗ B𝒟 B𝒟

⌟
∼

B𝑝
⌟

𝑑 id

in which all squares are cartesian, completing the proof.

C.3 Remark. The assumptions of Proposition C.2 are satisfied whenever the left fibration 𝑝 is
additionally a right fibration, i.e., a Kan fibration.

We now need to build the correct left fibration to which we can apply Proposition C.2. For
this we need the following.

C.4 Notation. Let 𝒟 be an ∞-category. We write Cocart(𝒟) ⊂ Cat∞,∕𝒟 for the subcategory
with objects cocartesian fibrations 𝑝∶ ℱ → 𝒟 and morphisms the cocartesian functors. We
write

LFib(𝒟) ⊂ Cocart(𝒟)

for the full subcategory spanned by the left fibrations. Note that LFib(𝒟) is also a full subcategory
of Cat∞,∕𝒟.

C.5 Recollection. For an ∞-category 𝒟, the inclusion Fun(𝒟,Ani) ↪ Fun(𝒟,Cat∞) ad-
mits a left adjoint given by postcomposition with B∶ Cat∞ → Ani. Under the straightening-
unstraightening equivalence, this corresponds to a left adjoint of the inclusion

LFib(𝒟) ↪ Cocart(𝒟) .

Explicitly, this adjoint sends a cocartesian fibration 𝑝∶ 𝒫 → 𝒟 to the unique left fibration
𝐿(𝑝)∶ ℱ → 𝒟 that fits in a commutative triangle

𝒫 ℱ

𝒟 ,

𝜄

𝑝 𝐿(𝑝)

where the functor 𝜄 is initial. Indeed, such a factorization exists because left fibrations are the
right class in the initial-left fibration factorization system, see, e.g., [57, § 4.1]. This also implies
that for any left fibration 𝑞∶ 𝒢 → 𝒟, there is a natural equivalence

MapCocart(𝒟)(𝑝, 𝑞) ≃ MapCat∞,∕𝒟
(𝑝, 𝑞) ≃ MapLFib(𝒟)(𝐿(𝑝), 𝑞) .

Here, left-hand equivalence holds since for left fibrations every edge is cocartesian. The right-
hand equivalence follows from the fact that the left fibrations are the right class of a factorization
system [HTT, Lemma 5.2.8.19].

In order to prove Theorem C.1, we fix some notation regarding oriented fiber products of
∞-categories.
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C.6 Recollection. Let 𝑓∶ 𝒞 → 𝒟 be a functor of∞-categories. We consider the oriented fiber
product (also called comma∞-category) 𝒞 ×⃗𝒟 𝒟 defined via the pullback

𝒞 ×⃗𝒟 𝒟 Fun([1],𝒟)

𝒞 × 𝒟 𝒟 ×𝒟

⌟
(ev0,ev1)

𝑓×id𝒟

in Cat∞. Note that by the universal property of the pullback, the functors (id𝒞, 𝑓)∶ 𝒞 → 𝒞 ×𝒟
and

𝒞 𝒟 Fun([1],𝒟)
𝑓 id(−)

induce a functor 𝑗 ∶ 𝒞 → 𝒞×⃗𝒟𝒟. By [HTT, Corollary 2.4.7.12], the projection pr2 ∶ 𝒞×⃗𝒟𝒟 → 𝒟
is a cocartesian fibration. The cocartesian fibration pr2 classifies the functor

𝒟 → Cat∞ , 𝑑 ↦ 𝒞∕𝑑 .

Furthermore, 𝑓 factors as

𝒞 𝒞 ×⃗𝒟 𝒟 𝒟 ,
𝑗 pr2

and 𝑗 admits a right adjoint given by projecting to the first factor.

Proof of Theorem C.1. We apply the left adjoint 𝐿 of Recollection C.5 to the cocartesian fibration
pr2 ∶ 𝒞×⃗𝒟𝒟 → 𝒟. Our assumptions precisely say that the resulting left fibration𝐿(pr2)∶ ℱ → 𝒟
satisfies the assumptions of Proposition C.2. Thus we get a commutative diagram

B𝒞∕𝑑 B𝒞 B(𝒞 ×⃗𝒟 𝒟) Bℱ

∗ ≃ B𝒟∕𝑑 B𝒟 B𝒟 ,

B𝑗

B𝑓

B𝜄

B𝐿(pr2)

𝑑 id

where the outer square is cartesian. Furthermore, since B inverts adjoints and initial functors
(see, e.g., [15, Corollary 2.11(4) & Remark 2.20]), the right square is cartesian. Thus the left
square is cartesian, as desired.

C.2 Profinite Theorem B
The goal of this subsection is to prove a variant of Quillen’s Theorem B for profinite categories
following the general strategy of §C.1. The main ingredient of the proof of Theorem C.1 was the
straightening-unstraightening equivalence. However profinite categories are not well-behaved
enough to admit a full straightening-unstraightening equivalence. The solution is to embed
profinite categories into condensed categories, where we have a straightening-unstraightening
equivalence thanks to [58, Theorem 6.3.1]. The precise theorem we aim to prove in this subsec-
tion is the following:

C.7Theorem. LetΣ be anonempty set of primenumbers. Let𝑓∶ 𝒞 → 𝒟 be amap inCat(Pro(Aniπ))
such that for any map 𝑑 → 𝑑′ in𝒟 the map of condensed anima

Bcond(𝒞∕𝑑) → Bcond(𝒞∕𝑑′)
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becomes an equivalence after Σ-completion. Then, for all 𝑑 ∊ 𝒟, the induced map

Bcond(𝒞∕𝑑) → f ib𝑑(Bcond𝑓)

becomes an equivalence after Σ-completion.

As mentioned above, straightening-unstraightening plays a crucial role in our proof. Thus,
we begin by defining cocartesian fibrations of condensed∞-categories.

C.8 Definition. Let 𝒞 be a condensed∞-category.

(1) A functor 𝑝∶ 𝒫 → 𝒞 of condensed ∞-categories is a cocartesian fibration if for each 𝑆 ∊
Pro(Setfin), the induced functor 𝑝(𝑆)∶ 𝒫(𝑆) → 𝒞(𝑆) is a cocartesian fibration and, fur-
thermore, for each map 𝛼∶ 𝑇 → 𝑆 in Pro(Setfin), the functor 𝛼∗ ∶ 𝒫(𝑆) → 𝒫(𝑇) sends
𝑝(𝑆)-cocartesian morphisms to 𝑝(𝑇)-cocartesian morphisms.

(2) A cocartesian fibration 𝑝∶ 𝒫 → 𝒞 is a left fibration if for each 𝑆 ∊ Pro(Setfin), the induced
functor 𝑝(𝑆)∶ 𝒫(𝑆) → 𝒞(𝑆) is a left fibration.

(3) We write Cocartcts(𝒞) for the subcategory of Cond(Cat∞)∕𝒞 with objects the cocartesian
fibrations and morphisms the functors 𝑓∶ 𝒫 → 𝒬 over 𝒞 such that for every 𝑆 ∊ Pro(Setfin),
the functor 𝑓(𝑆) preserves cocartesian morphisms. We write LFibcts(𝒞) ⊂ Cocartcts(𝒞) for
the full subcategory spanned by the cocartesian fibrations.

C.9 Remark. Let us denote by Funcocart([1],Cat∞) the subcategory of Fun([1],Cat∞) with
objects cocartesian fibrations and a morphism from 𝑝∶ 𝒫 → 𝒞 to 𝑝′ ∶ 𝒫′ → 𝒞′ is a square
squares

𝒫 𝒫′

𝒞 𝒞′

𝑓

𝑝 𝑝′

such that 𝑓 sends 𝑝-cocartesian morphisms to 𝑝′-cocartesian morphisms. Then combining [25,
Theorem 4.5] and [HA, Proposition 7.3.2.6] shows that the inclusion

Funcocart([1],Cat∞) ↪ Fun([1],Cat∞)

is a right adjoint. In particular, the inclusion preserves limits.
Let 𝑝∶ 𝒫 → 𝒞 be a functor of condensed∞-categories. The closure of Funcocart([1],Cat∞)

under limits in Fun([1],Cat∞) shows that if 𝑝 is a cocartesian fibration, then any map of con-
densed anima 𝑠 ∶ 𝐵 → 𝐴, the functor 𝑠∗ in the square

Functs(𝐴, 𝒫) Functs(𝐵, 𝒫)

Functs(𝐴, 𝒞) Functs(𝐵, 𝒞)

𝑠∗

𝑝∗ 𝑝∗

𝑠∗

sends 𝑝(𝐴)-cocartesian morphisms to 𝑝(𝐵)-cocartesian morphisms. Thus, using [58, Proposi-
tion 3.17], it follows that our definition of cocartesian fibration agrees with the definition given
in [58] in the case ℬ = Cond(Ani).
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C.10 Remark. By Remark 6.4, a functor of condensed∞-categories 𝑝∶ ℱ → 𝒞 is a left fibration
in the sense of Definition C.8 if and only if 𝑝op is a right fibration in the sense of Definition 6.2.
Furthermore, ifℱ → 𝒞 is a left fibration and 𝒫 → 𝒞 is a cocartesian fibration, then every functor
𝑓∶ 𝒫 → ℱ of condensed∞-categories over 𝒞 is a map in Cocartcts(𝒞).

For the condensed version of straighetning-unstraightening, we need to consider the con-
densed∞-category of condensed∞-categories:

C.11 Definition. WewriteCond(Cat∞) for the condensed∞-category given by the assignment

Pro(Setfin)
op ∍ 𝑆 ↦ Cat(Cond(Ani)∕𝑆) .

C.12 Theorem ([58, Theorem 6.3.1] and [57, Theorem 4.5.1]). There is an natural equivalence
of∞-categories

Cocartcts(𝒞) ≃ Functs(𝒞,Cond(Cat∞))
Moreover, this equivalence restricts to a natural equivalence

LFibcts(𝒞) ≃ Functs(𝒞,Cond(Ani)) .

We also have the following analogue of Recollection C.5 for condensed∞-categories:

C.13 Observation. Recall that the inclusion Cond(Ani) ↪ Cond(Cat∞) admits a left adjoint
Bcond ∶ Cond(Cat∞) → Cond(Ani). It is easy to see that both of these functors are compatible
with basechange and therefore lift to an adjunction of condensed∞-categories

𝜄 ∶ Cond(Ani) ⇆ Cond(Cat∞) ∶ Bcond ,

i.e., an adjunction in the (∞, 2)-category of condensed∞-categories. See also [59, Definition 3.1.1
and Proposition 3.2.14]. Thus the induced functor

Functs(𝒞,Cond(Ani)) → Functs(𝒞,Cond(Cat∞))

admits a left adjoint given by postcompositionwithBcond. Under the straightening-unstraightening
equivalence of Theorem C.12, this corresponds to a left adjoint 𝐿 of the inclusion

LFibcts(𝒞) ↪ Cocartcts(𝒞) .

Since left fibrations of condensed categories are the right class in the initial-left fibration
factorization systems, as in Recollection C.5, it follows from [HTT, Lemma 5.2.8.19] that the left
adjoint is given by factoring 𝒫 → 𝒞 into an initial functor followed by a left fibration.

To follow the strategy outlined in §C.1, we need a version of Proposition C.2. Now another
complication enters. Unlike in §C.1, the maps Bcond(𝒞∕𝑑) → Bcond(𝒞∕𝑑′) are not assumed to
be equivalences on the nose, but only after Σ-completion. Thus, we also need an analogue of
Proposition C.2 that works up to completion. We prove the following statement, which is a
variant of [62, Corollary 5.4]:

C.14 Proposition. Let 𝒳 be an ∞-category with colimits and let 𝐿∶ Cond(Ani) → 𝒳 be a
colimit-preserving functor. Let 𝒞 be a condensed ∞-category and 𝑝∶ ℱ → 𝒞 a left fibration of
condensed∞-categories corresponding via Theorem C.12 to a functor of condensed∞-categories
𝑝̃ ∶ 𝒞 → Cond(Ani). Assume that for each profinite set 𝑆, the functor

𝒞(𝑆) Cond(Ani)∕𝑆 Cond(Ani) 𝒳
𝑝̃(𝑆) 𝐿
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sends all morphisms to equivalences. Then for every 𝑑∶ 𝑆 → 𝒞, the induced map

𝑝̃(𝑑)∶ 𝑆 ×𝒞 ℱ → 𝑆 ×Bcond𝒞 Bcondℱ

becomes an equivalence after applying 𝐿.
C.15 Recollection. For the proof of the Proposition C.14, we recall that a functor of condensed
∞-categories 𝑓∶ ℱ → 𝒞 is a Kan fibration if it is both a left and right fibration. Equivalently, 𝑓
is Kan fibration if any of the following equivalent conditions is satisfied:

(1) For any 𝑆 ∊ Pro(Setfin), the functor 𝑓(𝑆) is a Kan fibration.

(2) The functor 𝑓 is right orthogonal to all maps of the form 𝑆 × {𝜀} → 𝑆 × [𝑛], where 𝑆 ∊
Pro(Setfin), 𝑛 ∊ 𝐍, and 𝜀 ∊ {0, 𝑛}.

Indeed, this follows immediately from Remark 6.4 and [57, Lemma 4.1.2].

Proof of Proposition C.14. We work in the∞-category

Cond(Ani)𝚫 ≔ Fun(𝚫op, Cond(Ani))

of simplicial objects in Cond(Ani). We factor 𝑆 → 𝒞 as 𝑆
𝑖
,→ 𝑇

𝑓
,→ 𝒞 where 𝑖 is contained in the

smallest saturated class in (Cond(Ani)𝚫)∕𝒞 containing all maps of the form

{𝜀} × 𝑆 [𝑛] × 𝑆

𝒞

where 𝑛 ∊ 𝐍, 𝜀 ∊ {0, 𝑛}, and 𝑆 ∊ Pro(Setfin), and 𝑓 is right orthogonal to these maps. It follows
fromRecollection C.15 that𝑓 is a Kan fibration. Since Kan fibrations are levelwise Kan fibrations,
it follows from Remark C.3 that the natural map

Bcond(𝑆 ×𝒞 ℱ) → 𝑆 ×Bcond𝒞 Bcondℱ

is an equivalence Thus it suffices to see that the induced map 𝑆 ×𝒞 ℱ → 𝑇 ×𝒞 ℱ becomes an
equivalence after applying 𝐿◦Bcond.

We note that, by the universality of colimits inCond(Ani)𝚫, the classℳ of allmaps 𝑠 ∶ 𝐴 → 𝐵
in (Cond(Ani)𝚫)∕𝒞, that have the property that

𝐿 colim𝚫op(𝐴 ×𝒞 ℱ) → 𝐿 colim𝚫op(𝐵 ×𝒞 ℱ)

is an equivalence is a saturated class in the sense of [57, Definition 2.5.5]. To see that 𝑖 is contained
inℳ, it therefore suffices to check this for the maps {𝜀} × 𝑆 → [𝑛] × 𝑆, where 𝑆 ∊ Pro(Setfin)
and 𝜀 ∊ {0, 𝑛}. Note that since the pulled back functor ([𝑛] × 𝑆) ×𝒞 ℱ → [𝑛] × 𝑆 is again a left
fibration and the pullback of a final functor along a left fibration is final [57, Proposition 4.4.7],
the induced funtor ({𝑛} × 𝑆) ×𝒞 ℱ → ([𝑛] × 𝑆) ×𝒞 ℱ is final. In particular,

Bcond(({𝑛} × 𝑆) ×𝒞 ℱ) → Bcond(([𝑛] × 𝑆) ×𝒞 ℱ)

is an equivalence, so {𝑛}×𝑆 → [𝑛]×𝑆 is inℳ. Furthermore, under this equivalence, the induced
map

({0} × 𝑆) ×𝒞 ℱ → Bcond(([𝑛] × 𝑆) ×𝒞 ℱ)
is identified with the map ({0} × 𝑆) ×𝒞 ℱ → ({𝑛} × 𝑆) ×𝒞 ℱ induced by 0 → 𝑛 in [𝑛] (see
Lemma C.16 and Remark C.17 below). But this map is an 𝐿-equivalence by assumption. There-
fore, 𝑖 is contained inℳ, which completes the proof.
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C.16Lemma. Let𝑝∶ ℱ → 𝒞 be a left fibration of condensed∞-categories and 𝑝̃ ∶ 𝒞 → Cond(Ani)
the straightened functor. Then for any morphism 𝛼 in 𝒞(𝑆) for some 𝑆 ∊ Pro(Setfin), given by
𝛼∶ [1] × 𝑆 → 𝒞, the map 𝑝̃(𝛼) in Cond(Ani)∕𝑆 is given by composing

({0} × 𝑆) ×𝒞 ℱ → Bcond(([1] × 𝑆) ×𝒞 ℱ)

with the inverse of the equivalence ({1} × 𝑆) ×𝒞 ℱ → Bcond(([1] × 𝑆) ×𝒞 ℱ).

Proof. By pulling back along 𝛼wemay assume that 𝛼 is the identity. Alsowe have an equivalence

LFibcts([1] × 𝑆) ≃ Functs([1] × 𝑆,Cond(Ani)) ≃ Fun([1], Cond(Ani)∕𝑆) .

Now observe that 𝑝̃(𝛼) can be computed as

ev1(𝜀 ∶ const ev0 𝑝̃ → 𝑝̃)

Here 𝜀 denotes the counit of the adjunction const∶ Cond(Ani)∕𝑆 ⇆ Fun([1], Cond(Ani)∕𝑆)∶ ev0.
Translating to the fibrational perspective via Theorem C.12, we obtain a rectangle

{1} × 𝐹{0} 𝐹{0} ×{0}×𝑆 ([1] × 𝑆) ≅ [1] × 𝐹{0}

𝐹{1} 𝐹

{1} × 𝑆 [1] × 𝑆

𝜀𝑝̃(𝛼)

⌟

⌟

and we are done once we see that the composite 𝐹{0} → 𝐹{0} ×{0}×𝑆 ([1] × 𝑆) → 𝐹 is identified
with the inclusion 𝐹{0} → 𝐹 after applying Bcond. But this is clear, since the two inclusions
{𝑖} × 𝐹{0} ↪ [1] × 𝐹{0}, 𝑖 = 0, 1, are identified after applying Bcond and the composite

{0} × 𝐹{0} ↪ [1] × 𝐹{0} → 𝐹

yields the inclusion 𝐹{0} → 𝐹 by construction.

C.17 Remark. In the situation of Lemma C.16, wemaymore generally consider a map 𝛼∶ [𝑛]×
𝑆 → 𝒞 corresponding to a composable sequence of 𝑛 arrows in 𝒞(𝑆). Let us denote by 𝑗 ∶ [1] →
[𝑛] the map that sends 0 to 0 and 1 to 𝑛. We then get a commutative diagram

({0} × 𝑆) ×𝒞 ℱ Bcond(([1] × 𝑆) ×𝒞 ℱ) ({1} × 𝑆) ×𝒞 ℱ

({0} × 𝑆) ×𝒞 ℱ Bcond(([𝑛] × 𝑆) ×𝒞 ℱ) ({𝑛} × 𝑆) ×𝒞 ℱ

id

≃

id

≃

where the map in the middle is induced by 𝑗. Since left fibrations are smooth [57, Proposi-
tion 4.4.7], the right horizontal maps are equivalences and thus also the vertical map in the
middle is an equivalence. It follows that the composite of the lower left map with the inverse of
the lower right map is equivalent to 𝑝̃ applied to the composite of the 𝑛 arrows determined by 𝛼.

One difference between Proposition C.14 and Theorem C.7 is that in the former we consider
fibers over general profinite sets 𝑆, while in the latter we only look at fibers over points. To reduce
from profinite sets to points, we use the following observation:
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C.18 Lemma. Consider a cartesian square

𝐵 𝐴

𝑇 𝑆

in Cond(Ani) such that 𝐴 is the colimit of a diagram 𝚫op → Pro(Aniπ) → Cond(Ani) and
𝑆, 𝑇 ∊ Pro(AniΣ). Then this square remains cartesian after Σ-completion.

Proof. Since Cond(Ani) is an∞-topos, geometric realizations are universal in Cond(Ani). By
[33, Example 1.9 and Corollary 1.13], geometric realizations are also universal in Pro(AniΣ).
Thus we may assume that 𝐴 ∊ Pro(Aniπ). Since the functor Pro(Aniπ) → Cond(Ani) is fully
faithful, the composite

Pro(Aniπ) Cond(Ani) Pro(AniΣ)
(−)∧Σ

agrees with the Σ-completion functor (−)∧Σ ∶ Pro(Aniπ) → Pro(AniΣ). The claim now follows
from the fact that Σ-completion is locally cartesian [36, Proposition 3.18].

C.19. Let 𝑓∶ 𝒞 → 𝒟 be a functor of condensed∞-categories. We now consider the condensed
∞-category 𝒞 ×⃗𝒟 𝒟 defined via the pullback square

𝒞 ×⃗𝒟 𝒟 Funcond([1],𝒟)

𝒞 × 𝒟 𝒟 ×𝒟

⌟
(ev0,ev1)

𝑓×id𝒟

as in Recollection C.6. By by [HTT, Corollary 2.4.7.12], the projection pr2 ∶ 𝒞 ×⃗𝒟 𝒟 → 𝒟 is a
cocartesian fibration of condensed∞-categories.

For sake of completeness we verify the following two facts which we have already used
for ordinary ∞-categories in the proof of Theorem C.1. First recall that by unstraightening
the cocartesian fibration of condensed ∞-categories ev1 ∶ Fun

cond([1], 𝒞) → 𝒞, one sees that
overcategories of condensed∞-categories are functorial.

C.20Proposition. Let𝑓∶ 𝒞 → 𝒟 be a functor of condensed∞-categories and consider the natural
cocartesian fibration pr2 ∶ 𝒞 ×⃗𝒟 𝒟 → 𝒟. Then for every profinite set 𝑆 and morphism 𝑑 → 𝑑′ in
𝒟(𝑆), the induced functor on fibers is the canonical functor

𝒞∕𝑑 = 𝒞 ×𝒟 𝒟∕𝑑⟶𝒞×𝒟 𝒟∕𝑑′ = 𝒞∕𝑑′

in Cond(Cat∞)∕𝑆 induced by the slice functoriality𝒟∕𝑑 → 𝒟∕𝑑′ .

Proof. We observe that the pullback square

𝒞 ×⃗𝒟 𝒟 Funcond([1],𝒟)

𝒞 × 𝒟 𝒟 ×𝒟

⌟
(ev0,ev1)

𝑓×id𝒟
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is in fact a pullback square in Cocartcts(𝒟). Under the equivalence of Theorem C.12, it therefore
corresponds to a cartesian square of functors𝒟 → Cond(Cat∞)

𝒞 ×⃗𝒟 𝒟 𝒟∕(−)

const(𝒞) const(𝒟)
𝑓

which proves the claim.

C.21 Lemma. For any functor of condensed∞-categories 𝑓∶ 𝒞 → 𝒟, the functor 𝑗 ∶ 𝒞 → 𝒞×⃗𝒟𝒟
is a fully faithful left adjoint.

Proof. The functor 𝑗 sits inside the commutative diagram

𝒞 𝒟

𝒞 ×⃗𝒟 𝒟 Funcond([1],𝒟)

𝒞 𝒟,

𝑓

𝑗 const

ev0

𝑓

in which all squares are cartesian. Since const is the fully faithful left adjoint of ev0, the proof of
[59, Lemma 6.3.9] shows that 𝑗 is also a fully faithful left adjoint.

Proof of Theorem C.7. We factor 𝑓 as

𝒞 𝒞 ×⃗𝒟 𝒟 𝒟
𝑗 pr2

and apply the left adjoint of Observation C.13 to the cocartesian fibration pr2. The resulting left
fibration 𝑝∶ ℱ → 𝒞 classifies the functor

Bcond◦p̃r2 ∶ 𝒞 → Cond(Ani)

and is given by factoring

𝒞 ×⃗𝒟 𝒟 ℱ 𝒞 ,𝜄 𝑝

where 𝜄 is initial and 𝑝 is a left fibration. Here, p̃r2 is the unstraightened functor of pr2.
We now apply Proposition C.14 to the left fibration 𝑝, with 𝐿 the Σ-completion functor

(−)∧Σ ∶ Cond(Ani) → Pro(AniΣ) .

Thus we have to verify that for any 𝑆 ∊ Pro(Setfin) and any map 𝛼∶ 𝑑 → 𝑑′ ∊ 𝒞(𝑆), the induced
map Bcondp̃r2(𝛼) becomes an equivalence after Σ-completion. By construction p̃r2(𝑑) is defined
via a cartesian square

p̃r2(𝑑) 𝒞 ×⃗𝒟 𝒟

𝑆 𝒟
𝑑
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and similarly for p̃r2(𝑑
′). It follows that both p̃r2(𝑑) and p̃r2(𝑑

′) are in Cat(Pro(Ani𝜋)) since the
latter is closed under limits in Cond(Cat∞). It follows that for any point 𝑠 ∶ ∗ → 𝑆 the cartesian
square

Bcondp̃r2(𝑑◦𝑠) Bcondp̃r2(𝑑)

∗ 𝑆𝑠

satisfies the assumptions of Lemma C.18, since Bcond is the geometric realization of the corre-
sponding simplicial object. Thus it remains cartesian after Σ-completion (also the same holds for
𝑑′ instead of 𝑑). By [SAG, Theorem E.3.6.1], equivalences in Pro(AniΣ) can be checked fiberwise.
Thus wemay thus reduce to the case where 𝑆 = ∗. But in this case Bcondp̃r2(𝛼) is by construction
the map

Bcond(𝒞∕𝑑) → Bcond(𝒞∕𝑑′) ,

which becomes an equivalence after Σ-completion by assumption. Thus, Proposition C.14 shows
that in the commutative diagram

Bcond𝒞∕𝑑 Bcond𝒞 Bcond(𝒞 ×⃗𝒟 𝒟) Bcondℱ

∗ ≃ Bcond𝒟∕𝑑 Bcond𝒟 Bcond𝒟 ,

Bcond𝑗

Bcond𝑓

Bcond𝜄

Bcond𝐿(pr2)

𝑑 id

the outer square is cartesian. Since Bcond inverts left adjoints and initial functors of condensed
∞-categories, the claim follows.
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