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Abstract

We study a condensed version of the étale homotopy type of a scheme, which refines both
the usual étale homotopy type of Friedlander-Artin-Mazur and the proétale fundamental
group of Bhatt-Scholze. In the first part of this paper, we prove that this condensed homo-
topy type of schemes satisfies descent along integral morphisms and that the expected fiber
sequences hold. We also provide explicit computations, for example for rings of continuous
functions.

In the second part, we study the fundamental group of the condensed homotopy type in
more detail. We show that, unexpectedly, the fundamental group of the condensed homotopy
type of the affine line over the complex numbers, Aé, is nontrivial. However, we prove that the
Noohi completion of the condensed fundamental group recovers the proétale fundamental
group of Bhatt-Scholze. We also investigate a milder completion, the quasi-separated quotient
of the condensed fundamental group. We show that this quotient already yields the expected
answers and is, in some respects, even better behaved than the proétale fundamental group.

A key ingredient in many of our arguments is a description of the condensed homotopy
type using the Galois category of a scheme, as introduced by Barwick-Glasman-Haine.
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1 Introduction

1.1 Motivation and overview

Let X be a locally topologically noetherian scheme. In their work on the proétale topology [10,
§7], Bhatt and Scholze defined a refinement of the étale fundamental group called the proétale
fundamental group throet(X ). The profinite completion of nfmet(X ) recovers the usual étale
fundamental group; moreover, the proétale and étale fundamental groups coincide for normal
schemes. While the étale fundamental group classifies local systems with values in profinite
rings such as Z,, it generally does not classify Q,-local systems. The proétale fundamental group
has the better feature that it classifies local systems in a more general class of topological rings,
including Q-local systems.

The étale fundamental group is the fundamental group of the étale homotopy type,' a proan-
ima introduced by Artin—-Mazur [7, §9] and Friedlander [23, §4]. The étale homotopy type classi-
fies derived Z,-local systems, and has a number of interesting applications. For example, Fried-
lander’s [21] and Sullivan’s [74] proofs of the Adams Conjecture, Feng’s proof [20] of Tate’s 1966
conjecture on the Artin-Tate pairing [76], and applications to anabelian geometry [42; 68].

Motivated by the utility of the proétale fundamental group and the étale homotopy type, one
desires a refinement of the Bhatt-Scholze proétale fundamental group to a ‘homotopy type’ that
classifies derived Q,-local systems and refines the key properties of the étale homotopy type.
The main goal of this article is to investigate such a refinement using the theory of condensed
mathematics, introduced by Clausen-Scholze [70].

Condensed refinements of the étale homotopy type have already been defined or suggested in
various places in the literature, by Bhatt-Scholze [10, Remark 4.2.9], Barwick-Glasman-Haine [8,
13.8.10], Hemo-Richarz-Scholbach [40, Appendix A], and Meffle [60]. In [40, Appendix A] and
[8, §13.8] it is shown that the respective homotopy types indeed classify derived Q,-local systems.
But beyond a few basic formal properties, little more was known about these refinements. Hence,
the primary aim of this article is to undertake a thorough investigation of them.

The definitions given in [10], [40], and [60] are quite similar and proceed as follows. For a
gcgs scheme X, pick a proétale hypercover X, — X by w-contractible schemes. Then for every
n € N, my(X,,) is a profinite set. Define the condensed homotopy type of X to be the colimit

Hgnd(x) = C%loign 7[O(X.) € Cond(Ani),

computed in the co-category Cond(Ani) of condensed anima.

This article consists of two parts. In the first part, we show that in many respects the con-
densed homotopy type behaves as one would expect from a refinement of the étale homotopy
type. Among other results, we show that an analogue of the fundamental fiber sequence holds
and that the condensed homotopy type satisfies integral descent; see Theorems 1.1 and 1.2 below.
We also provide explicit computations of the condensed homotopy type, for example for rings of
continuous functions C(T, C), where T is a compact Hausdorff space (see Theorem 1.3).

One of the main new tools that we use in many of our proofs relies on the work of Barwick-
Glasman-Haine [8]. In loc. cit. the authors define a condensed category Gal(X), called the Galois
category of a scheme. The aforementioned condensed refinement of the étale homotopy type in
[8,13.8.10] is the classifying space of this condensed category. We prove in Proposition 3.36 that
this definition agrees with the others mentioned above, that is,

1M (X)) ~ BGal(X).

1Here, we really mean the étale fundamental group as defined in SGA3.



Since Gal(X) can be described somewhat explicitly, this is a useful tool in many proofs and
calculations. For a more detailed account of the results we prove, see §1.2 below.

In the second part of this article, we investigate the condensed fundamental group of X. Every
geometric point X — X defines a point of the condensed anima IT$9"(X), giving rise to

oM (X, %) = 7, (TTQM(X), X).

Computing these groups is generally difficult, and the results can be wild and unexpected. For
instance, we prove in Corollary 7.4 that the fundamental group of the affine line over the complex
numbers is nontrivial:

TEOM(AL, %) # 1.

While this departs from the classical situation, we show that the Noohi completion of Tcgond(X , %)

recovers the proétale fundamental group of Bhatt-Scholze; see Theorem 8.12. In fact, we prove
cond,gs
1

haves computationally as expected (cf. Theorem 1.7). Studying nion ® is another major theme

of the second part of this article. It turns out that in some ways this quotient is even better be-
proét

(X, x), a milder completion of niond(X , %), be-
d,q

that already the quasi-separated quotient

haved than 7 (see, e.g., Remark 7.39). Using results from the first part, we establish the van

1
Kampen and Kiinneth formulas for niond’qs, allowing complete calculations for varieties over

fields (cf. Theorems 1.9 and 1.10). For a more detailed account of the results we prove, see §1.2
below.

1.2 The condensed homotopy type

We now turn to explaining results that we prove in the first part of this paper in more detail. The
first is a condensed version of the ‘fundamental exact sequence’ for the étale fundamental group.

1.1 Theorem (fundamental fiber sequence, Corollary 5.6). Let f : X — S be a morphism between
gcgs schemes, and let§ — S be a geometric point of S. Ifdim(S) = 0, then the naturally null sequence

NEM(X5) — HEME) — HZMS)

is a fiber sequence in the co-category Cond(Ani).
The second is descent along hypercovers by integral surjections:

1.2 Theorem (integral hyperdescent, Corollary 6.16). The functor X — X;lfoit sending a qcgs
scheme X to its hypercomplete proétale co-topos satisfies integral hyperdescent. As a consequence,
if X. » X is an integral hypercover, then the natural map of condensed anima

colim M (x,) — M9 (x)

is an equivalence.

The description of the condensed homotopy type as BGal(X) is a crucial ingredient in our
proof of the above theorem. Using this description, Theorem 1.2 follows rather quickly from the
fact that, for an integral morphism of schemes f : X — Y, the functor Gal(f) is a right fibration
Proposition 6.9.

For the third, we give a complete computation of the condensed and étale homotopy types
of rings of continuous functions to the complex numbers:



1.3 Theorem (Corollary 4.33). Let T be a compact Hausdorff space and consider the ring C(T, C)
of continuous functions to the complex numbers. Then there is a natural equivalence of condensed
anima

1$9"d(Spec(C(T, C))) ~ T .

(Here, the right-hand side denotes the condensed set represented by T.)

As a consequence, up to protruncation, the étale homotopy type of Spec(C(T, C)) is equivalent
to the shape of the topological space T. In particular, if T admits a CW structure, then, up to pro-
truncation, the étale homotopy type of Spec(C(T, C)) recovers the underlying anima of T.

1.4 Remark. The computation of the protruncated étale homotopy type of rings of continuous
functions seems new. We also do not know of a direct computation that does not pass through
the condensed homotopy type.

1.3 The condensed fundamental group

We now turn to our results about the condensed fundamental group. But first, let us remark that
we also obtain a reasonably explicit description of the condensed set of connected components
of TISM(X).

1.5 Theorem (Theorem 4.17 and Corollary 4.19). Let X be a qcqs scheme. Then, for any extremally
disconnected profinite set S, we have

TP (X)(S) = Map, (S, IX])/~

where ~ is the equivalence relation generated by pointwise specializations.
In particular, if X has finitely many irreducible components, then n(c)‘md(X ) coincides with the
usual profinite set 7y (X) of connected components of X.

1.6 Remark (see Example 4.23). Let R be a ring with the property that |[Spec(R)| is homeomor-
phic to the underlying spectral space of Huber’s adic unit disk over Q,. Then the condensed set
Tc(c)"“d(Spec(R)) coincides with the separated quotient of the space |Spec(R)|. This is a compact
Hausdorff space, and moreover, it coincides with the Berkovich unit disk, i.e.,

chond(spec(R)) ~ IDl,BerkI '
0 Q,

While this example feels rather contrived in the realm of schemes, in a follow-up article we plan
to study a similarly defined condensed homotopy type for rigid spaces.

We now turn to our results about the condensed fundamental group. As stated before, the
condensed group T[iond(Alc) is nontrivial. Our first result is that a quotient more mild than Noohi
completion forces ﬂ:‘lzond(Aé) to become trivial. Specifically, Clausen and Scholze introduced a
localization A — A% of the category of condensed sets called the quasiseparated quotient [69,
Lecture VI], and we show:

1.7 Theorem (Theorem 7.17). Let X be a topologically noetherian scheme that is geometrically
unibranch and let X — X be a geometric point. Then there is a natural isomorphism

cond,gs N 3 _
X, ®) > (X %)

As a consequence of Theorems 1.1 and 1.5, we deduce a fundamental exact sequence for the
quasiseparated quotient of the condensed fundamental group:



1.8 Theorem (fundamental exact sequence, Corollary 7.16). Let k be a field with separable closure
k, let X be a qcqgs k-scheme, and fix a geometric point X — Xj. If X is geometrically connected and
X has finitely many irreducible components, then the sequence

1— Ttiond’qs(X,g, X)) — niond’qS(X, X) — Gal, — 1.
is exact.

Theorem 1.7 can be used, together with the integral descent (Theorem 1.2), to show that for
many non-normal schemes, the quasiseparated quotient of the condensed fundamental group
still admits a description in terms of the étale fundamental group. Moreover, surprisingly, is a
topological (Hausdorff) group rather than some more complicated condensed group.

1.9 Theorem (van Kampen formula for niond’qs, special case of Theorem 7.35). Let X be a Nagata
gcgs scheme and let XV = ]_[iXZ’ be its normalization decomposed into connected components.
After choosing base points and étale paths, one has that

cond,gs _ to & _
m q (X, x) ~ ( *, P T[cit(le’xi) wtop Z*r)/H/ ,

where Z*" is a free (discrete) group of finite rank, =P denotes the free topological product and H’
is an explicit closed normal subgroup.

Using the van Kampen and the Kiinneth formulas for the étale fundamental group, we prove:

1.10 Theorem (Corollary 7.37). Let k be a separably closed field and let X and Y be schemes of
finite type over k. If Y is proper or char(k) = 0, then the natural homomorphism of condensed
groups

TP Y (5,9) = 0B xR )

is an isomorphism.

1.4 Related work

Asmentioned earlier, the first definitions of the condensed homotopy type were given by Barwick-
Glasman-Haine via exodromy [8, 13.8.10], by Bhatt-Scholze [10, Remark 4.2.9] and by Hemo-
Richarz-Scholbach [40, Appendix A]. We expand the definitions given there by the perspective
of relative shape and, more importantly, show that all of these are equivalent. Another approach
to the condensed homotopy type that mostly uses (simplicial) topological spaces rather than
condensed mathematics (along the lines of Artin and Mazur’s work) appeared in [60].

Some results and definitions in this article constitute a part of doctoral theses of the forth
[56] and sixth [81] named authors.

1.5 Linear overview

In §2, we recall some preliminaries on condensed anima, pro-objects, condensed co-categories,
and proétale sheaves. In §3, we recall the various definitions of the condensed homotopy type and
prove that they are all equivalent. We also compute the condensed homotopy type of henselian
local rings (Corollary 3.44). In § 4, we describe the connected components of the condensed
homotopy type. Among other things, we show that if X is a qcqs scheme with finitely many irre-
ducible components, then Tcgond (X) is simply the profinite set 7, (X) of connected components of



X (Corollary 4.19). As an application of our explicit description of ngond(X ), we also we compute

the condensed homotopy type of rings of continuous functions (Theorem 1.3)

In §5, we prove the fundamental fiber sequence Theorem 1.1. We also prove an analogue of
a result of Friedlander relating the condensed homotopy type of the geometric fiber of a smooth
proper morphism to the fiber of the induced map on condensed homotopy types (Theorem 5.12).
In §6, we prove that the condensed homotopy type satisfies integral hyperdescent (Theorem 1.2).

We then turn our attention to the condensed fundamental group. In §7, we study the quasisep-
arated quotient of the condensed fundamental group. We begin by showing that niond(Aé) # 1.
Then we prove Theorems 1.7 and 1.10, along with the van Kampen theorem and fundamental
exact sequence for the quasiseparated quotient. In §8, we prove that the Noohi completion of
the condensed fundamental group recovers the proétale fundamental group.

We have three appendices. Appendix A, by Bogdan Zavyalov, is on the structure of rings of
continuous functions and the relationship between these rings and Cech-Stone compactification.
We need these results for the computation of the condensed homotopy type of rings of continuous
functions, however were not able to find any sources that contained all of the results we needed.

It is well-known that there is an abstract isomorphism between the absolute Galois group of
the function field C(¢) and the free profinite group on the set C. See, for example [19; 38; 46]. It
seems to be folklore that this isomorphism can be chosen to be compatible with decomposition
groups; this is crucial for our proof that niond(A}:) # 1. Since we could not find this proven in
the literature, and there are some subtleties involved, we have included a proof in Appendix B.
In Appendix C, we prove a version of Quillen’s Theorem B for profinite categories, which is a
crucial ingredient in §5.2.

1.6 Notational conventions
We use the following standard notation.

(1) We write Cat,, for the large co-category of small co-categories, and write Ani C Cat,, for
the full subcategory spanned by the anima (also called co-groupoids or spaces).

(2) Given a small oo-category C, we write PSh(C) := Fun(C°P, Ani) for the co-category of
presheaves of anima on C.

(3) Given an co-topos X', we write X™P ¢ X for the full subcategory spanned by the hypercom-
plete objects. The inclusion is accessible and admits a left exact accessible left adjoint, so
that WP is also an co-topos, called the hypercompletion of X.

(4) Given an co-site (€, 7), we write Sh.(C) for the co-topos of sheaves of anima on € with respect

to 7. We write Sh};yp(e) := Sh,(€)MP. The co-topos Sh?yp(e) can also be identified as the full
subcategory of Sh.(C) spanned by those sheaves that also satisfy descent for hypercovers. If
the topology 7 is clear from the context, we may omit it from the notation.

(5) Given a scheme X, we write Ety and ProEty for its étale and proétale site, respectively. More-
over, we write X := Sh(Ety) and Xproet = Sh(ProEty) for the co-topoi of étale and proétale
sheaves of anima on X, respectively.

(6) For an integer n > 0, we write [n] for the poset {0 < ... < n}.

(7) For each integer n > 0, we write A, C A for the full subcategory spanned by [0], [1], ...,
[n].
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2 Preliminaries

For later use, let us record a few definitions and observations on condensed anima (§2.1), pro-
anima and their relation to condensed anima (§2.2), condensed co-categories (§2.3), shape theory
(§2.4), and proétale sheaves and w-contractible objects (§2.5).

2.1 Recollection on condensed anima
All of the material contained in this subsection is gathered from [9] and [70].

2.1 Notation. We write Top for the category of topological spaces, and Comp C Top for the
full subcategory spanned by the compact Hausdorff spaces. We write §: Top — Comp for
the Cech-Stone compactification functor, i.e., the left adjoint to the inclusion. By Stone duality,
the category Pro(Setg,,) of profinite sets embeds fully faithfully into Comp with image the full
subcategory spanned by the totally disconnected compact Hausdorff spaces. We write

Extr C Pro(Setg,)

for the full subcategory spanned by the extremally disconnected profinite sets. By a theorem of
Gleason [29], the projective objects of the category Comp are exactly the extremally disconnected
profinite sets. Moreover, a profinite set is extremally disconnected if and only if it is a retract of
the Cech-Stone compactification of a set equipped with the discrete topology.

2.2 Recollection (condensed anima). Give the category Comp of compact Hausdorff spaces
the Grothendieck topology where the covering families are generated by finite jointly surjective
families. For each compact Hausdorffspace T, let T® denote the underlying set of T equipped with
the discrete topology. By the universal property of Cech-Stone compactification the ‘identity’



map T® — T extends to a surjection B(T%) - T. In particular, every compact Hausdorff space
admits a surjection from an extremally disconnected profinite set. Hence the subcategories

Extr C Pro(Setg,) C Comp

are bases for the topology of finite jointly surjective families. By [3, Corollary A.7], the restriction
functors define equivalences hypercomplete of co-topoi
(2.3) Sh™P(Comp) = Sh™P(Pro(Set,)) = Sh™P(Extr).

The oo-topos Cond(Ani) of condensed anima is any of the equivalent co-topoi (2.3).

Since every surjection T/ -» T of profinite sets with T extremally disconnected admits a
section, a presheaf F on Extr is a hypersheaf if and only if F carries finite disjoint unions to
finite products. That is,

Sh™P(Extr) ~ Fun*(Extr’®, Ani) .

From this description it follows that sifted colimits in Cond(Ani) can be computed in the
presheaf category Fun(Extr’®, Ani).

2.4 Remark. Since the category Comp of compact Hausdorff spaces is not a small category,
there are some set-theoretic issues in the above discussion. We explain how to deal with these
issues in Remark 2.30.

Given the final description of condensed anima, we make the following convenient general
definition.

2.5 Definition (condensed objects). Let € be an co-category with finite products. The co-cate-
gory of condensed objects of C is the co-category

Cond(@) := Fun*(Extr®?, @)

of finite product-preserving presheaves Extr®® — €. If D is another co-category with finite
products and F : € — D is a finite product-preserving functor, we write

Feond : Cond(€) — Cond(D)
for the functor given by post-composition with F.
2.6. Observe thatif F : @ — D admits a right adjoint G, then G*°™ is right adjoint to F°°™d,

2.7 Recollection (homotopy groups of condensed anima). The functor 7, : Ani — Set pre-
serves finite products. Moreover, for each integer n > 1, the functor ,, : Ani, — Grp preserves
finite products. There is a canonical identification

Cond(Ani), = Cond(Ani,)

between pointed objects of condensed anima and condensed objects of pointed anima. We simply
write 7t : Cond(Ani) — Cond(Set) for ngond and 7t,, : Cond(Ani), — Cond(Grp) for

cond

Cond(Ani), = Cond(Ani,) I, Cond(Grp) .
Explicitly, given a condensed anima A, the condensed set my(A) : Extr? — Set is given by
To(A)(S) = TH(A(S)) -
Similarly, given a global section a : % — A, the condensed group 7,,(A, a) is given by

(A, a)(S) = 1, (A(S), a) .



2.8 Recollection [9, Construction 2.2.12]. Write
ev, . Cond(Ani) -» Ani

for the global sections functor, given by A — A(x). The functor ev, admits a left adjoint, that we
denote by '
(=)dis¢: Ani — Cond(Ani)

Furthermore (=) is fully faithful. We call the image of (—)dis¢ the discrete condensed anima.

2.9 Recollection (the restricted Yoneda embedding). The restricted Yoneda embedding defines
a functor

Top — Fun™(Extr®?, Ani) = Cond(Ani), T — T
given by
T[S+ MapTop(S, m].

Note that this functor factors through Cond(Set) C Cond(Ani).? Also recall that this functor is
fully faithful when restricted to the full subcategory of Top spanned by the compactly generated
topological spaces [70, Proposition 1.7]. Since it rarely leads to confusion, we often omit the
underline and simply write T for T.

2.2 Pro-objects and completions
‘We now turn to some recollections about proanima and their relation to condensed anima.
2.10 Recollection (7t-finite and truncated anima). Let A be an anima.

(1) We say that A is truncated if there exists an integer n > 0 such thatforalla € A and k > n,
we have (A, a) = 0.

(2) We say that A is ni-finite if A is truncated, my(A) is finite, and for all a € A and k > 0, the
group 1, (A, a) is finite.

(3) We write Ani; C Ani.,, C Ani for the full subcategories of Ani spanned by the n-finite
and truncated anima, respectively.

2.11 Recollection (on various completions).
(1) Since Cond(Ani) admits cofiltered limits, the inclusions
Ani; C Ani_,, C Cond(Ani)
extend to cofiltered-limit-preserving functors
Pro(Ani,) < Pro(Ani.,) — Cond(Ani).

Here, the functor Pro(Ani.,,) - Cond(Ani) is not fully faithful. However, by [9, Exam-
ple 3.3.10; 34, Proposition 0.1], its restriction to Pro(Ani,) is fully faithful.

2However, note that if T is not Ty, then the the sheaf MapTop(—, T) is not generally accessible [70, Warning 2.14 &

Proposition 2.15]. So, depending on which way you deal with set-theoretic issues, it is not a condensed set, cf. Remark 2.30.
However, in this paper, we only apply this functor to T; topological spaces anyways.

10



(2) The above chain of functors Pro(Ani,;) & Pro(Ani..) — Cond(Ani) admits left adjoints

()n

T

Cond(Ani) —— Pro(Ani_,) W) Pro(Ani,)
“disc ~n

that we call the prodiscretization, resp., profinite completion functors.

(3) Similarly, the inclusions Sets, C Cond(Set) and Grp;,, C Cond(Grp) induce inclusions
Pro(Setg,) C Cond(Set) and Pro(Grp;,) C Cond(Grp) that admit left adjoints

Cond(Set) — Pro(Setg,,) and (=)": Cond(Grp) — Pro(Grpg,)
that we refer to as profinite completion functors.
We now explain the effect of profintie completion of condensed anima on 7 and m;.
2.12 Lemma (completions & 7y /m;). Let A be a condensed anima and a : * — A a point.

(1) The map nty(A) — mo(AL) induced by the unit map A — A2 exhibits 71y(AZ) as the profinite
completion of my(A).

(2) If my(A) € Cond(Set) is discrete, then the unit map A — A%} induces an isomorphism of
profinite groups
(A, o) = m(AR, a).

Proof. For (1), note that since the square of inclusions

Pro(Setg,) —— Cond(Set)

[ [

Pro(Ani,) —— Cond(Ani)

commutes, so does the induced square

A
Cond(Ani) & Pro(Ani,)

71'01 lno

Cond(Set) —— Pro(Setg,)

of left adjoints.
For (2), since my(A) is a set, we may assume that y(A) = . It suffices to show that, for any
finite group G, precomposition induces a bijection

MapC()nd(Grp)(Tcl (A’ a)a G) = MapCOnd(Grp)(T[l (A;T\’ a)a G) = MapPro(Grpﬁn)(Tcl (AQ’ a)a G) .

To see this, note that we have a commutative square

TT
ToMaPp,oani.), (A7, BG) —— Mapp,oGrp, (M1 (A7, @), G)

l |

TCOMapcond(Ani)* (A,BG) 7:1 > MapCond(Grp) (m1(4,a),G),

11



where the vertical maps are those induced by the unit transformation A — AZ. Since 1y(A) = *,
by the equivalence of 1-truncated, pointed connected objects and group objects [HTT, Theorem
7.2.2.12], the horizontal maps are bijections. It thus suffices to see that the map

Mapc o, dcani, (A2,BG) — Mapc . d(ani), (4, BG)

induces a bijection on 7. But since G is finite and Pro(Ani,), & Cond(Ani),, is fully faithful,
by adjunction it is even an equivalence. O

2.13 Remark. One cannot drop the assumption that y(A) is discrete in Lemma 2.12 (2). Indeed,
let A be the condensed set represented by the topological circle S'. Then for any x € S!, we have

m(A,x) =% but m (AL, x)= Z.

2.3 Condensed oo-categories

‘We now recall some background on internal higher category theory and condensed co-categories.
The main point is that it is often useful to use the fact that the co-category of condensed co-cate-
gories is equivalent to the co-category of categories internal to condensed anima. We refer the
reader to [57, §3; 59, §2] for more background about internal higher category theory.

2.14 Definition. Let B be an co-category with finite limits. A category internal to B is a simplicial
object F : A°? — B satisfying the following conditions.

(1) Segal condition: For each integer n > 2, the natural map

X F{n—-1<n})

FlnD = FQO <1p x FEL <2} x - X

is an equivalence in B.
(2) Univalence axiom: The natural square

F([0]) —2— F([0]) x F([0])

l 1

F([3]) — F{0<2)xF({1 <3}

is a pullback square in B. Here, the left vertical map is given by restriction along the unique
map [3] — [0], the right vertical map is the product of the maps given by restriction along
the unique maps {0 < 2} — [0] and {1 < 3} — [0], and the bottom horizontal map is induced
by restriction along the inclusions {0 < 2} < [3] and {1 < 3} & [3].

We write
Cat(B) c Fun(A°P, B)

for the full subcategory spanned by the categories internal to B.

2.15 Remark. Elsewhere in the literature, internal categories are also called complete Segal
objects.
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2.16. Joyal and Tierney [48] showed that the nerve construction defines an equivalence

N: Cat,, = Cat(Ani)
C ~ [[n] = Mapg,, ([n].C)]

from the co-category of co-categories to the co-category of categories internal to anima. See [39]
for a modern, model-independent proof of this fact.

2.17. The main example that we care about in this paper is the case where 3 = Cond(Ani). Since
the Segal conditions and the sheaf condition are both limit conditions, the canonical equivalence

Fun(Extr’®, Fun(A°P, Ani)) ~ Fun(A°, Fun(Extr°?, Ani))
restricts to an equivalence
Cond(Cat,,) ~ Cat(Cond(Ani)) .
Therefore, we often implicitly identify Cond(Cat,,) with Cat(Cond(Ani)).

We now turn to some specific features of Cond(Cat,,).

2.18 Definition (continuous functors). The category of condensed co-categories is cartesian
closed, see [57, Proposition 3.2.11]. For condensed co-categories € and D, we denote the internal
Hom by

Fun®d(e, D).

Similarly, we write
Fun®(€, D) = Fun®™(¢, D)(x)
for the oo-category of continuous functors € — D.
2.19. Observe that the functor (€, D) — Fun®®(€, D) is characterized by the existence of natural
equivalences
Mapg,, (A, Fun™(€, D)) ~ Map,yq(cat..)(A X € D)
for each co-category A.

cts

2.20. Explicitly, Fun (€, D) is given by the end

FunCtS(e’ 2)) ~ J Fun(e(S), ﬂ(s)) )
SeExtr?

see, for example, [28, Proposition 2.3]. In particular, the objects in this co-category are precisely
natural transformations (=) — D(—) of functors Extr®® — Cat,..

Many of the condensed co-categories we are interested come from pro-objects:

2.21 Observation. By taking internal categories on each side, the right adjoint fully faithful
embedding Pro(Ani,) — Cond(Ani) of Recollection 2.11 induces a fully faithful right adjoint
functor

t: Cat(Pro(Ani,)) - Cond(Cat,,) .

Many of the examples of condensed co-categories that we care about are in the image of this
embedding.

13



For condensed co-categories in the image of 1, we can describe their value at Cech-Stone com-
pactifations explicitly:

2.22 Proposition. Consider C € Cat(Pro(Ani,)) as a condensed co-category via t and let M be a
set. Then the functor

Fun®*(B(M), ©) — [ edmd)

meM
induced by the inclusions {m} & B(M) is an equivalence of oo-categories.

Proof. Itsuffices to check that this functor becomes an equivalence after applying Map,, ([n],—)
for every n. Since we have a natural chain of equivalences

Mapg,, ([n], Fun(B(M), €)) ~ Map,.cat_)(BM) X [1], €)
= MapCond(Catoo)(ﬁ(M)’ eV[n](G)),

it suffices to show that the natural map

Mapconqcat,,) (BIM), evi,) (€)) — ql eV (O)({m})

is an equivalence. Since evy,|(€) is a profinite anima by assumption and both sides are clearly
compatible with limits, we may assume that ev},,|(C) = A is a n-finite anima.

By [SAG, Lemma E.1.6.5], there exists a Kan complex A, with values in finite sets such that
|A.| 2 A. Since (M) is a compact projective object in Cond(Ani), it follows that the natural
map

|MapcOnd(Ani)(5(M),A-)| - MapCOHd(Ani)(ﬁ(M), |A.])

is an equivalence. Since every A,, is finite, it follows that Mapc,nq Ani)(B(M ),A.) =~ HM A, is
an infinite product of Kan complexes. Since geometric realizations of Kan complexes commute
with arbitrary products,® the natural map

MapCond(Ani)(B(M)’ A) =~ |N[apCond(Ani)(6(1\4)’ A)l — H |A.] = H A
M M
is an equivalence. O

2.4 Recollection on shape theory

2.23 Recollection. For every co-topos X, there exists a unique geometric morphismg: X —
Ani and the pullback functor g* admits a pro-left adjoint g : X — Pro(Ani). Then the shape
of X is defined as the image

[T, (X) := gy(*x) € Pro(Ani) .

The protruncated shape functor
M., : RTop — Pro(Ani_)
is defined as the composite

I .. Pro(t.y) .
RTop — Pro(Ani) ——— Pro(Ani_,,)

3This follows from the fact that the homotopy groups of the geometric realization of a Kan complex are computed as
its simplicial homotopy groups, and these commute with infinite products.

14


http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.E.1.6.5

of the shape with the unique cofiltered limit preserving pro-extension of the functor
T<w . Ani — Pro(Ani_,), A~ {1, A},

assigning to an anima its Postnikov tower. Similarly, the profinite shape is defined by composing
further with the profinite completion functor

~ Meo (_)7/; .
f,, : RTop —> Pro(Ani.,,) —> Pro(Ani,).

2.24 Notation. For a topological space T, we write II,(T) € Pro(Ani) for the shape of the
oo-topos Sh(T) of sheaves of anima on T. We write I1_(T) for the protruncation of IT (T).

We write LCH C Top for the full subcategory spanned by the locally compact Hausdorff
spaces.

2.25 Remark. If T is a topological space that admits a CW structure, then I1(T) coincides with
the underlying anima of T

2.26 Lemma. The triangle

LCH
/ w‘
Cond(Ani) Pro(Ani_,)

A
(_)disc
canonically commutes.

Proof. Let T be a locally compact Hausdorff space. By [32, Corollary 4.9], there is a natural fully
faithful left exact left adjoint
ShP*Y(T) & Cond(Ani)r

from the Postnikov completion of the co-topos of sheaves on T to condensed anima sliced over 7.
Since the protruncated shapes of an co-topos and its Postnikov completion coincide, we deduce
that this algebraic morphism induces an equivalence on protruncated shapes

H<oo(cond(Ani)/T) = H<oo(T)

Finally, observe that the protruncated shape of the slice exactly coincides with prodiscrete com-
pletion of the condensed set T. O

2.27 Remark. Lemma 2.26 was also observed in [4, Theorem 4.12].

2.5 Recollection on proétale sheaves

We now turn to recalling some background about the proétale topology and proétale sheaves.
The following definition is from [10]:

2.28 Definition. Let f: X — Y be a morphism of schemes.
(1) Wecall f: X — Y weakly étale, if both f and its diagonal A are flat.

(2) We write ProEty for the proétale site of X, i.e., the site of weakly étale X-schemes equipped
with the fpqc topology.

15



(3) We furthermore write X, := Sh(ProEty) for the proétale co-topos of X.
proét b D

. . ; hyp
2.29. We almost exclusively work with the hypercomplete proétale co-topos Xproet

2.30 Remark (size issues). Since the category of weakly étale X-schemes is not small, Defi-
nition 2.28 introduces some set-theoretic issues. In the end, one can always circumvent these
issues and they do not have any serious effect on our results. For the more cautious reader, we
suggest one of the following two ways of reading this paper:

(1) Fixonce and for all two strongly inaccessible cardinals § < . All schemes, spectral spaces, etc.
are then assumed to be §-small and all categorical constructions, such as taking sheaves ona
site, are taken with respect to the larger universe determined by ¢. In particular X 7 hyp < always
means hypersheaves of e-small anima on §-small weakly étale X-schemes, and s1m11arly for
the oo-category of condensed anima Cond(Ani).

(2) If the reader does not want to work with universes, they may proceed as follows. For a
scheme X, choose a strong limit cardinal x such that X is x-small. Write ProEty , for the
category of x-small weakly étale X-schemes. We then define

hyp _ qp,byp :
Xpmét’K = Sh™”*(ProEty ) .
The assumption that x is a strong limit cardinal guarantees that there are enough w-con-
tractibles in ProEty ,, see Definition 2.35. We then define

thp

progt = C0lim, X hyp

proét,x
and similarly for the category of condensed anima. This is also the approach taken by Clausen
and Scholze [70].

However, then some statements about X ryoit and Cond(Ani), such as Proposition 2.44, are
no longer true on the nose. In such a case, to correct the result, we make an implicit choice
of strong limit cutoff cardinal x, and X yoit is to be understood as X ryollt .- Inthe end, a choice
of such a x is harmless and does not affect our results, see Remark 3.17.

The same discussion applies to the non-hypercomplete proétale co-topos X pros-
We now prove a generalization of [10, Lemma 5.1.2 & Corollary 5.1.6].

2.31 Notation. For a scheme X, we denote the inclusion Ety — ProEty of the the étale site into
the proétale site by v.

2.32 Proposition. Let X be a qcgs scheme. Then the pullback functor v* @ X¢w — Xproe is fully
faithful when restricted to truncated objects.

Proof. First observe that since the left exact pullback functor v* preserves n-truncated objects
[HTT, Proposition 5.5.6.16], the truncated pullback functors are well-defined. Furthermore, for
an n-truncated proétale sheaf F, by [41, Proposition A.1] the sheaf condition can be stated as
follows:

(1) The presheaf F sends finite disjoint unions of affine schemes proétale over X to finite prod-
ucts.
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(2) For every surjection f: U -» X of affine schemes proétale over X with associated Cech
nerve U, — X, the canonical map

F(X)—> lim F(U;)

[I]EASVHI
is an isomorphism.

This is just the n-truncation of the sheaf condition as formulated in [SAG, Proposition A.3.3.1].
(One easily checks that the category ProEt)"‘(ff C ProEty of affine proétale schemes over X, which
forms a basis for the proétale topology, satisfies the conditions stated there.)

Since the problem is local on X, we reduce to the case that X is affine. Then, the category
Profit2f is exactly given by those U € Profity which can be written as a small cofiltered limit
U = lim;; U; of affine schemes U; € Ety. For some n > 0, let F now be an object of Xgt<n- The
presheaf pullback of F to the proétale site of X is given by the formula U + colim;¢op F(U;) on
allU e ProEtj}lcf . We wish to show, that this is already a sheaf. For this, we can just copy the proof
of [55, Proposition 7.1.3(2)]. The argument there works not only for equalizers, but for all finite
limits as they appear in our n-truncated sheaf condition. As v*F restricts to F on affine étale
schemes ]’Et‘;(ff, itis clear that we have v, v*F = F forall F € X, <, i.e., the pullback 1, v* is fully
faithful when restricted to n-truncated objects. See [56, Proposition A.5.33] for more details. [

2.33 Notation. LetX be ascheme. We denote by Hitoo (X) the protruncated étale shape 1'I<°°(X:ty )
and by 1€ (X) the profinite étale shape ﬁm(XZtyp).

2.34 Corollary. Let X be a scheme. Then v induces an equivalence H<00(X;lryoit) - 1'[<°°(thy )

Proof. Immediate from Proposition 2.32 and [8, Example 4.2.8]. O

Basis of weakly contractible objects

Recall that an object Y of a site € is weakly contractible if every covering U - Y admits a section.
In the proétale site, weakly contractible qcgs objects are given by w-contractible schemes.

2.35 Definition. A qcgs scheme X is w-contractible if every weakly étale surjection U » X has
a section.

For the subsequent characterization of w-contractibles, recall the following fact on connected
components of qcgs schemes.

2.36 Lemma [STK, Tag 0900]. Let X be a qcqs scheme. Then my(X), endowed with the quotient
topology induced by |X |, is a profinite set.

2.37 Definition. Let X be a qcqs scheme. We say that X is w-local if the subspace X C |X| of
closed points is closed and every connected component of X has a unique closed point. We stay
that X is w-strictly local if X is w-local and every étale surjection U - X admits a section.

2.38 Remark. As observed in [6, Proposition 3.1], since a w-strictly local scheme is a retract of
an affine scheme, every w-strictly local scheme is affine.

2.39 Remark. By [10, Lemma 2.2.9], a qcgs scheme X is w-strictly local if X is w-local and the
local rings at all closed points are strictly henselian.
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2.40 Example. Let k be a separably closed field. Then any qcgs weakly étale k-scheme X is
w-strictly local. Indeed, such a scheme is zero dimensional and thus, by Serre’s cohomological
characterization of affineness, affine. By [STK, Tag 092Q)], it is therefore a cofiltered limit of finite
disjoint unions of Spec(k) and hence w-strictly local.

2.41 Recollection [STK, Tag 0982]. A scheme X is w-contractible if and only if it is w-strictly
local and 7y(X) € Pro(Setg,,) is extremally disconnected. In particular, w-contractible schemes
are affine.

2.42 Notation. For a scheme X, we write ProEt)VgC C ProEty for the full subcategory spanned
by the w-contractible schemes.

2.43 Recollection [STK, Tag 0990]. The subcategory ProEt;C C ProEty isabasis for the proétale
topology. But beware that ProEt)"}’C is not closed under fiber products in ProEty.

2.44 Proposition. Let X be a scheme. Restriction along the inclusion of sites Pro]ﬁit}"‘(’C C ProEty
defines an equivalence of hypercomplete co-topoi

b h . h .

X e = Sh™P(ProBty) = Sh™P(ProBty*) .

Moreover, this co-topos can be identified with the co-topos of finite product-preserving presheaves
Fun™((ProEt}°)°?, Ani) .

Proof. This follows from Recollection 2.43 and [3, Corollary A.7] combined with the defining
property of w-contractible schemes. Details are given in [56, Proposition 2.2.12]. O
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Part 1
Foundational results

3 The condensed homotopy type

In this section, we introduce the condensed homotopy type of a scheme X. As explained in the
introduction, we give three definitions, and prove that they are equivalent. The first, given in §3.1,

. . p hyp .
is the relative shape of the hypercomplete proétale co-topos Xproét over the co-topos Cond(Ani)

of condensed anima. The second, given in §3.2, is as the unique hypercomplete proétale cosheaf
whose value on a w-contractible affine U is the profinite set 7,(U) of connected components of
U. The last, given in §3.3, is as the condensed classifying anima of the Galois category Gal(X)
introduced by Barwick-Glasman-Haine [8]. In § 3.4, we conclude the section with a sample
computation: given a henselian local ring R with residue field x, we show inclusion of the closed
point induces an equivalence

BGal, ~ IT5%"(Spec(x)) = I19"(Spec(R)) .

3.1 Definition via the relative shape

For an co-topos XX, the idea of shape theory relies on the existence of a canonical colimit preserv-
ing functor I'y : X — Pro(Ani). We define the condensed homotopy type of a gcqs scheme in the
tradition of shape theory but relative to the base Cond(Ani). To do this, we use the identification

XMP » Fyun* ((ProEt)’®)°P, Ani)

proét —

of the hypercomplete proétale co-topos as the co-topos of finite-product preserving presheaves
on the site of w-contractible weakly étale X-schemes (Proposition 2.44).

3.1 Definition. Let X be a scheme. Write
my © PSh(ProEty®) — Cond(Ani)
for the colimit-preserving extension of
Ty : ProEty¢ — Extr < Cond(Ani)
along the Yoneda embedding.
3.2 Observation. The functor 7y admits a right adjoint
7* : Cond(Ani) — PSh(ProEt}°)
given by the assignment
A [W = A(mg(W))] .

Note that since the functor 7 : ProEty® — Cond(Ani) preserves finite disjoint unions, the right
adjoint to 7y factors through

Fun”™ ((ProBty®)°?, Ani) C PSh(ProEty©).
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3.3 Notation. Given a scheme X, we also write Ty for the composite

h ~ , . ﬂu .
X —— Fun” ((ProEty)?, Ani) —— Cond(Ani)

where the left-hand functor is the equivalence of co-topoi from Proposition 2.44.

Next, we need a generalization of [10, Lemma 4.2.13].

3.4 Proposition. Let X be a scheme. Then:

(1) The functor 7y : X;lfoit — Cond(Ani) is left adjoint to * : Cond(Ani) — xp

proét’

(2) For each condensed anima A and w-contractible affine W € ProEty, there is a natural equiva-
lence
T (AYW) = A(my(W)) .

Proof. As explained in Observation 3.2, the functor

7* : Cond(Ani) — PSh(ProEty°)

factors through ngoit. Hence 7™ remains right adjoint to the restriction of 7. In particular, we
have 7*(A)(U) =~ A(mo(U)). O

3.5 Remark. The right adjoint 7* is part of a geometric morphism of co-topoi

o T, oh
(3.6) Cond(Ani) == X', .

which is induced by the morphism of sites

7. Pro(Setg,) — ProEty ,
$=lims; — S@X =1lim [ [ x.

s€S;
For details, see [56, Theorem 2.2.13].
3.7 Definition. Let X be a scheme.
(1) The condensed homotopy type of X is the condensed anima
19M(X) = m4(1) € Cond(Ani) .

(2) The condensed set of connected components of X is the condensed set
meM(X) = mo(IIS"(X)) € Cond(Set) .
3.8. The first part of Definition 3.7 says that the condensed homotopy type is the relative shape

of the co-topos X;foit over the co-topos Cond(Ani), see [13, §4.1] for background on relative

shapes. Since sending a scheme X to 7, : XEE’OZ . — Cond(Ani) defines a functor
Sch — (RTop,)/ cond(Ani) -

Composition with the relative shape over Cond(Ani), therefore defines a functor

(3.9) 1" : Sch — Cond(Ani), X +— IT9M(X).
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3.10 Warning. The first point of [10, Lemma 4.2.13] is not true in the stated generality. It says
that (for condensed sets A) the formula 7*(A)(U) ~ A(wy(U)) in Proposition 3.4 holds for all
qcgs schemes U of the proétale site of X. It seems, however, that the proof in loc. cit. only works
for w-contractible schemes. Indeed, if this stronger claim was true, it would follow that for all
gcgs schemes X one has
MapCond(Set)(KO(X)’ A) = A(TCO(X)) > 7 (A)(X)
= Mathyp (X, m*(A))

proét
= Map(jond( Ani) (Hggnd (x),A)
= Ma‘pConcl(Set)(Tc(c)Ond (X)’ A) :

This would then imply that the condensed set of connected components matches the usual one,
ie., ngond(X ) = my(X) in Cond(Set). As we show in Example 4.24, this is not generally the case.
However, this is true if X has finitely many irreducible components, see Corollary 4.19.

The definition tells us the value of the condensed homotopy type on w-contractible schemes:

3.11 Example. Let X be a w-contractible scheme. Then, by definition,
RN (X) = (1) = mp(X) .

In particular, if X is the spectrum of a separably closed field, then IISO"4(X) = .

3.12. One consequence of Example 3.11 is that every geometric point X — X defines a point
* = HPM(X) - IRM(X)

of the condensed homotopy type. Thus we can take homotopy groups at geometric points:

3.13 Definition. Let X be a scheme, let X — X be a geometric point, and let n > 1. The n-th
condensed homotopy group of X at X is the condensed group (abelian if n > 2)

(X, %) = 7, (MI2M(X), %) .

From the definition, it is easy to see that the condensed homotopy type refines the protrun-
cated and profinite étale homotopy types. For this result, recall our notation on shapes and étale
homotopy types from §2.4 and Notation 2.33.

3.14 Lemma. Let X be a scheme. Then there are natural equivalences
d : d iyé
IR 2 M) and PO ~ TIE(X).
Proof. By Corollary 2.34, the protruncated shapes of the (hypercomplete) étale and proétale co-
topoi agree. This remains true after profinite completion. Thus the claims follow from the claim
that the triangle of left adjoints

xhyp
proét

7 %

Cond(Ani) # Pro(Ani_,)
"disc
commutes. To see this, note that the corresponding diagram of right adjoints commutes by the

uniqueness property of the pro-extension Pro(Ani) - X P of the constant sheaf functor. [J
proét
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3.2 Characterization as a hypercomplete proétale cosheaf

The goal of this subsection is to prove the following characterization of the condensed homotopy
type and derive some consequences for the étale homotopy type.

3.15 Notation. We write Aff "¢ C Sch for the full subcategory spanned by the w-contractible
schemes. (Recall from Recollection 2.41 that w-contractible schemes are affine.)

3.16 Proposition. The condensed homotopy type
110" : Sch — Cond(Ani)

is the unique hypercomplete proétale cosheaf whose restriction to w-contractible schemes is given
by the functor
T, AffV¢ — Extr C Cond(Ani) .

Proof. First notice that since 7y preserves colimits, by definition 19" carries proétale hyper-
coverings to colimit diagrams. Moreover, by construction I1" agrees with 7, when restricted
to w-contractible schemes (see Example 3.11). Thus it suffices to show that every scheme admits
a proétale hypercover by w-contractible schemes. Since every scheme admits a Zariski cover by
gcgs schemes, we can reduce to the qcgs case. In this case, the claim is the content of [STK, Tag
09A1]. O

3.17 Remark (on set theory). Let X be a scheme and « a strong limit cardinal such that X is
x-small. Then there exists a hypercover by w-contractibles W, — X such that W, is x-small for
all n. Hence the formula

19" (X) ~ colimpop 7o(W.)

shows that for x < " an implicit choice of cutoff cardinal in Definition 3.7 does not affect the
outcome. More precisely, under the embedding Cond(Ani), & Cond(Ani),, one gets carried
to the other. Equivalently, if one takes the approach to dealing with set theory explained in
Remark 2.30 (2), then for all choices of suitable cutoff cardinals the images of the condensed ho-
motopy type in the colimit Cond(Ani) = colim, Cond(Ani), agree. Therefore we can continue
to leave choices of cutoff cardinals implicit without getting into trouble.

If one would try to set up the theory in the setting of light condensed anima, one would get a
different result in general. See also Remark 3.41.

3.18 Corollary.

(1) The functor )
1% : Sch — Pro(Ani.,,)

is the unique hypercomplete proétale cosheafvalued in Pro(Ani ., ) whose restriction to w-con-
tractible affines coincides with

Ty . AffV¢ — Extr < Pro(Ani_).

(2) The functor ’
1 : Sch — Pro(Ani,)

is the unique hypercomplete proétale cosheaf valued in Pro(Ani, ) whose restriction to w-con-
tractible affines coincides with

T, : AffV¢ —» Extr & Pro(Ani,) .
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Proof. Since both (—)}._. and (-)7 are left adjoints, the composites

Hcond (_)Aisc
Sch —=— Cond(Ani) — 25 Pro(Ani.,,)

and
cond

A
Sch —=—— Cond(Ani) L N Pro(Ani,)

are still hypercomplete proétale cosheaves. Moreover, on w-contractible affines they both are
given by U — my(U) € Extr. In Lemma 3.14, we have seen that these functors recover the
protruncated and profinite étale homotopy types, respectively. O

3.19 Remark. It follows immediately from Proposition 3.16 that the ‘condensed shape’ defined
in [40, Appendix A] agrees with our notions.

In [40], Hemo-Richarz-Scholbach prove that IT°"4(X) classifies local systems on X with
coefficients in any condensed ring. We recall the precise statement here; for this, we need the
following definition from [40]. In order to state it, recall that we write 7z* for the natural pullback

functor Cond(Ani) — Xlgfopét of Observation 3.2.

3.20 Definition. Let A be a condensed ring.

(1) We define the condensed co-category Perf , of perfect complexes over A, to be the condensed
oo-category defined by

Extr’® — Cat,,

S + Perf A(S) -
Here, Perf 5 (g is the usual co-category of perfect complexes over the ordinary ring A(S).

(2) Let X be a qcgs scheme. Write D(X,r¢r; A) for the derived co-category of 7*A-modules on
X. We define the co-category of lisse A-modules Dyjg(Xpro¢e; A) to be the full subcategory of
D(Xproer; A) spanned by the dualizable objects.

3.21 Proposition [40, Proposition A.1]. There is a natural equivalence of co-categories
Fun®* (119" (X), Perfy,) = Dyjs(Xproer; A) -

3.22 Remark. Proposition 3.21 is one of the main motivations to study the condensed homotopy
type. Indeed, the analogous statement for the ususal étale homotopy type IIS (X) is not even
true in for A = Q. See [10, Example 7.4.9] for a concrete counterexample.

3.3 Definition via exodromy

In this subsection, we explain why the pyknotic étale homotopy type defined in [8, Remark 13.8.10]
agrees with TI9"(X). For this, we recall the following definition from [8] in the general setting
of coherent co-topoi, but we are most interested in the case of the étale co-topos of a scheme. In
order to understand the general definition, the reader may wish to review the theory of coherent
oo-topoi from [SAG, Appendix A] or [8, Chapter 3].
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3.23 Definition. Let XX be a coherent co-topos. The Galois co-category of X is the condensed
oo-category Gal(XX') defined by the functor

Pro(Setg,)°? — Cat,,
S > Fun™"(x, Sh(S)) .

Here, Fun™“°"(2, Sh(S)) is the co-category of coherent algebraic morphisms s* : X — Sh(S) of
oo-topoi, i.e., those left exact left adjoints that send truncated coherent objects of XX to locally
constant constructible sheaves of anima on the topological space S.

The assignment X' — Gal(X) defines a functor from the co-category of coherent co-topoi
and coherent geometric morphisms to Cond(Cat,,).

Now we explain what this definition means more concretely in the two examples we are
interested in in this paper.

3.24 Recollection. Let X be a qcgs scheme. Then the co-topos X, is coherent and by [8, Lemma
9.5.3 & Proposition 9.5.4], the truncated coherent objects of X, are the constructible étale sheaves
of anima on X.

3.25 Notation. Let X be a qcqs scheme. We write Gal(X) := Gal(Xy).

3.26 Recollection. Let X be a qcgs scheme. Since the co-topos X, is 1-localic, for a profinite
set S, the value Gal(X)(S) is equivalent to the 1-category of algebraic morphisms of 1-topoi

s Xer,<o = Sh(S)<o

that send constructible étale sheaves of sets to locally constant constructible sheaves of sets on
S. In particular, the global sections Gal(X)(x) recovers the category of points of the étale topos
of X.

3.27 Recollection. Let T be a spectral space (e.g., the underlying space of a qcgs scheme).
Then the co-topos Sh(T) is coherent and by [8, Lemma 9.5.3 & Proposition 9.5.4], the truncated
coherent objects of Sh(T) are the constructible sheaves of anima on T.

3.28 Notation. For a spectral space T, we write Gal(T,,,) := Gal(Sh(T)).

3.29 Recollection. Let T be a spectral space. Since spectral spaces are sober, by [8, Example
3.7.1] and [HTT, Remark 6.4.5.3], for a profinite set S, the value Gal(T,,.)(S) is equivalent to the
poset of quasicompact maps f : S — T ordered by pointwise specialization: f < g if and only if

for all s € S, we have f(s) € {g(s)}. In particular, Gal(T,,,)() recovers the specialization poset of
T.

3.30 Remark. Note that the condensed set underlying the condensed poset Gal(T,,,) is indeed
a condensed set, i.e., is x-accessible for some x. In contrast, the condensed set represented by the
topological space T is typically not x-accessible, see [70, Warning 2.14]. The difference between
the two is that Gal(T,,,)(S) is given by the set of quasicompact maps S — T, as opposed to all
continuous maps.

3.31 Recollection. For a qcgs scheme X, the condensed co-categories Gal(X) and Gal(X,,,) are
in the image of the fully faithful functor

t: Cat(Pro(Ani,)) - Cond(Cat,,)
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of Observation 2.21. In fact, if we denote by Lay_ the full subcategory of Cat,, spanned by 7t-fi-
nite layered categories in the sense of [8, Definition 2.3.7], then Gal(X) and Gal(X,,,) are even in
the image of the fully faithful functor Pro(Lay, ) — Cond(Cat,,). See [8, §13.5] for more details.

Now we fix some notation regarding condensed oo-categories and classifying anima.

3.32 Definition. We define condensed co-categories Cond(Ani) and Cond(Set) by the assign-
ments
S Cond(Ani) /g and S~ Cond(Set) s ,

respectively.

3.33 Notation. We denote the left adjoint to the inclusion Ani < Cat,, by B: Cat,, — Ani.
Given an co-category C, we call BC the classifying anima of C.

3.34. The functor B preserves finite products. Hence post-composition with B induces a functor
Bend : Cond(Cat,,) — Cond(Ani)

that is left adjoint to the inclusion Cond(Ani) < Cond(Cat,,).

3.35 Definition. Given a condensed co-category C, we call B"d(@) € Cond(Ani) the condensed
classifying anima of C.

To see the desired comparison, the idea is that, by [80, Corollary 1.2], we have a natural
equivalence

Fun®®(Gal(X), Cond(Ani)) ~ X P

proét *

In other words, in the condensed world, X;lryo%t is a presheaf co-category on Gal(X)P. But the
shape of a presheaf co-topos is given by taking the classifying anima of the co-category that it is

presheaves on; the same holds in the condensed world.

3.36 Proposition. Let X be a qcgs scheme. Then there is a natural equivalence of condensed anima
107 (x) ~ BeondGal(X) .

Proof. This is an immediate consequence of [80, Theorem 1.2] and [59, Proposition 4.4.1]. For
the reader not so familiar with the theory developed in [59], we spell out a more hands-on proof.
Recall that for co-categories € and D, the functor

Fun(BC, D) — Fun(C, D)

induced by precomposition along € — BC is fully faithful (since B€ ~ €¢[€~!] is the localization
of C obtained by inverting all maps, this follows from the universal property of localization).
Since limits of fully faithful functors are fully faithful [37, Proposition 2.1; 56, Proposition A.1.3],
it follows that precomposition with b : Gal(X) — B<"4Gal(X) defines a fully faithful functor

Fun®S(BMGal(X), Cond(Ani)) —X— Fun®®(Gal(X), Cond(Ani)).

Furthermore, by [80, Lemma 4.3] this functor admits a left adjomt by.
By [80, Corollary 1.2] we have a natural equivalence X yp ~ Fun®®(Gal(X), Cond(Ani)).
Under this equivalence the functor

7*: Cond(Ani) — xvp

proét
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agrees with the functor given by precomposing with the unique morphism Gal(X) — *. We
write a : B"Gal(X) — * for the unique morphism, and obtain a commutative triangle

Fun®®(B°"dGal(X), Cond(Ani)) b, xhp

proét
a* )
*

Cond(Ani)

But now since b* is fully faithful and b*(1) = 1, it follows that by(1) = 1, Thus,
(1) = agby(1) = ay(1) .
Finally, by [80, Corollary 3.20] we have
Fun®®(B¢°"dGal(X), Cond(Ani)) ~ Cond(Ani) /Beond Gal(X)
and the functor ay identifies with the forgetful functor. In particular ay(1) =~ BoMGal(X). O

3.37 Corollary. Let X be a qcgs scheme. If dim(X) = 0, then nggnd(x ) = Gal(X) and this con-
densed anima is a 1-truncated profinite anima.

Proof. This is immediate from [36, Observation 1.25] and Recollection 3.31. O

3.38 Example (I1$9" of a field). Let k be a field and choose a separable closure k of k. Write
Galy, for the absolute Galois group of k with respect to k. Then the choice of separable closure
induces an equivalence

1107 (Spec(k)) = Gal(Spec(k)) ~ BGaly, .

The left-hand identification follows from Corollary 3.37, and the right-hand identification follows
from [8, Examples 11.2.1 and 12.2.1].

We do not use the next corollary in the remainder of this article, but we include it for com-
pleteness:

3.39 Corollary. Let X be a gcgs scheme. If dim(X) = 0, then II°™(X) = « if and only if the
reduced scheme X qq is Spec(k) for k a separably closed field.

Proof. As the étale co-topos is invariant under universal homeomorphisms, the same holds for
Gal and therefore TT%™, As X — X4 is a universal homeomorphism, the if direction follows by
the Example 3.38. For the reverse direction, note that Pt(X¢;) of a 0-dimensional affine scheme
is contractible only if X = Spec(R) for R a local ring with separably closed residue field k. For
such a scheme, it is X,.4 = Spec(k). O

3.4 Computation: 1™ of henselian local rings

We conclude this section by explaining how to use the definitions to show that the condensed
homotopy type of a w-strictly local scheme X (in the sense of Definition 2.37) agrees with the
profinite set 71y(X) of connected components of X. This allows for a direct computation of the
condensed homotopy type of a henselian local ring.
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3.40 Proposition. Let X be a w-strictly local scheme. Then TI2™(X) ~ 1o(X).

3.41 Remark. Let X be a qcgs scheme that locally can be written as the spectrum of a countable
colimit of finite type Z-algebras. Then one can show that there is a hypercover W, — X consisting
of w-strictly local X-schemes with the property that my(X) is a light condensed set. Hence it
follows from Proposition 3.40 that in this case I1S"4(X) is a light condensed anima in the sense
that it is in the image of the fully faithful functor

Sh(Pro(Setﬁn)&l) < Cond(Ani) .

For a general scheme X, the condensed homotopy type 1974(X) need not be light.
Recall that the proétale site is “tensored” over profinite sets (cf. [10, Example 4.1.9]).

3.42 Lemma. Let X be an affine scheme and f, : S — 7y(X) a map from a profinite set. Let X' =
"X ®nry(x) S" be the affine scheme constructed (functorially) in [10, Lemma 2.2.8] with a proétale
map f : X' - X satisfying ny(f) = fo. If X is w-strictly local, then so is X'.

Proof. We can split the construction of X’ into two steps: first consider X"’ = X ® S coming from
"tensoring” by S. It satisfies 75 (X"") = my(X) X S. Then realize X’ as a closed subscheme of X"’
that is moreover an intersection of clopen subschemes, by looking at S C 7y(X) X S = mo(X"")
and writing S as an intersection of clopen subsets in this larger set.

Let us first check it for X”'. By definition and [10, Lemma 2.2.9], an affine scheme is w-strictly
local if it is w-local and all of its connected components are spectra of strictly henselian rings.
Here, we are using the following observation: the connected components of a w-local affine
scheme are spectra of local rings. Indeed, they are affine (being closed subschemes of an affine
scheme) and have a single closed point (by definition of w-locality). Thus, Zariski localizations
at closed points of a w-local affine scheme match the corresponding connected components.

One checks that both of these conditions are satisfied for X" = X ® S by checking the
following facts: (X ® S) = m(X) X S, every connected component of X ® S is isomorphic (as a
scheme) to some connected component of X, and (X ® S) ~ X4 ®S. Each of those is reasonably
easy to check, as X ® S is defined as an inverse limit of the form lim; X5i = lim;(X U ... U X)
where the transition maps restricted to each copy of X appearing there are just identities onto
another copy of X. Here S = lim; S; for finite sets S;.

The second step of passing from X"’ to X’ by intersecting an inverse system of clopen sub-
schemes follows in a similar way. O

Proof of Proposition 3.40. By Proposition 3.16, this statement holds when X is w-contractible. In
general, pick a hypercover of the profinite set 7y(X) by extremally disconnected profinite sets. By
[10, Lemma 2.2.8], Recollection 2.41, and Lemma 3.42, we obtain a proétale hypercover X, - X
by w-contractible affine schemes* that recovers the original hypercover of 7y (X) after applying
. We compute

nM(X) ~ colim 2™ (X,,)
[n]eAcr

~ coli X,) ~my(X),
colim mo(Xp) = mo(X)

as desired. O

4Here we have used that the functor in loc. cit. commutes with limits and respects covers.
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We now move on to the promised applications.

3.43 Corollary. Let S be a profinite set and X a w-strictly local scheme. Then
(X ® S) ~ me(X) X S .

Proof. This follows from Proposition 3.40 and Lemma 3.42 with f, = pr, : 7(X) X S — 7((X)
together with the equality mo(X ® S) = me(X) X S. O

3.44 Corollary. Let R be a henselian local ring with residue field x. Then the inclusion of the closed
point Spec(x) < Spec(R) induces an equivalence

" (Spec(x)) = T (Spec(R))
and both are equivalent to BGal,.

Proof. Write X = Spec(R) and x = Spec(x). Fix a separable closure % of x and let R*" be the
corresponding strict henselization. Writing % as an increasing union of finite separable exten-
sions (and using that FEt, ~ FEty) provides a presentation of X’ = Spec(R®") as a pro-(finite
étale) cover of X, see [STK, Tag OBSL]. Let X, be the Cech nerve of this cover X’ — X. As the
equivalence FEt, ~ FEty extends to the categories of pro-objects, we compute that X, writes as

= — [
.:,X ® Gal, xGal, — X' ®Gal, /3 X

compatibly with the analogous presentation of the Cech nerve x, of X = Spec(x)) — Spec(x) = x.
Applying I19™ to the corresponding “ladder” diagram (coming from the map x, — X.) and
using that, for every m € N,

Galy ~ (% @ Galy') — N"(X’ @ Galy)') ~ Galy'

is an isomorphism (where we are using Corollary 3.43 and the fact that both X and X’ are
connected w-contractible schemes), we conclude. O

4 Connected components of the condensed homotopy type

Let X be a qcgs scheme. In this section, we give an explicit description of the condensed set of
connected components Tc(c)ond(X ) of the condensed homotopy type I1$S"4(X). To do so, we make
use of the Galois category Gal(X,,,) of the Zariski co-topos in the sense of Definition 3.23. In
§4.1, we show that the condensed connected components of B Gal(X,,,) agree with ng"nd(X ).
In §4.2, we use this description to show that if X has finitely many irreducible components, then

C"nd(X ) agrees with the profinite set 7y(X) of connected components (Corollary 4.19). We also
give examples of connected schemes whose rtc"“d(X ) is nontrivial and show that ncond(X ) can
be quite exotic in general. Finally, in §4.3, we use our explicit description of ncond(X ) to compute
the condensed and étale homotopy types of the ring of continuous functlons from a compact
Hausdorff space to C, see Corollary 4.33.
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4.1 Pro-Zariski sheaves

Recall that for a scheme X, we will write X,,, for the co-topos of Zariski-sheaves on X.

4.1 Definition. Let X be a qcgs scheme. Let us write Xcors" for the full subcategory of Zariski

sheaves, that is spanned by the constructible sheaves on X, i.e., those sheaves that are constant
with finite stalks on a finite constructible stratification of X. We call the co-topos

h h
Xproyar = Sh_y’ (Pro(X5or™™))

prozar *

constr

of hypersheaves for the effective epimorphism topology on Pro(Xge™"), the hypercomplete

prozariski topos of X. Since pullbacks along qcqs morphisms of schemes preserve constructible

hyp . s 1.
sheaves, X o, is functorial in X.

4.2 Remark. This construction makes sense more generally for any bounded coherent co-topos
(in the sense of [SAG, Appendix A]) and was called solidification in [9] and pyknotification in
[80].

4.3. Let X be a qcgs scheme. The embedding X,,, — X, preserves constructible sheaves and
thus defines a functor

constr constr
oot — Xgonstr,

Extending to proobjects we obtain a morphism of sites p* : Pro(Xger*") — Pro(Xg ") and thus
an algebraic morphism of co-topoi

h h
Xprorar = Shepy (Pro(Xgo™™tn).

Finally, [55, Example 7.1.7] provides an equivalence X yp Sh}elgfp(Pro(Xécf“S“)) so that we

proét
obtain an algebraic morphism
hyp hyp
* o
p M Xprozar - proét *

Recall thatamap Y — X is a Zariski localization if Y is isomorphic (over X) to a finite disjoint
union of open subschemes of X.

4.4. Let X = Spec(R) be affine scheme. We write Zarfgff for the category of affine zariski local-
izations of X. Since open immersions between qcgs schemes are of finite presentation it follows
from [STK, Tag 01ZC] that the canonical functor

Pro(Zar;}ff) — Sch/x

is fully faithful and thus we may equip Pro(Zar)ﬁﬂ) with the fpqc-topology. Since the sheaf repre-
sented by a Zariski localization is constructible, we obtain a morphism of sites

p: Pro(Zard®) — Pro(xgrstt
4.5 Lemma. Let X be an affine scheme. Then u induces an equivalence of co-topoi

h h
Shfggc(Pro(Zar;}ff)) ~ X dosar

Proof. The proof is exactly the same as in [55, Example 7.1.7].
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4.6 Remark. Let X be an affine scheme. Then under the equivalence of Lemma 4.5, the functor
p* is induced by the morphism of sites

Pro(Zar;}ff) N Pro(Et‘;(ff) ,

that comes from the inclusion Zar)‘}ff < Et;’(ff. Here Et;ff denotes the category of affine étale
X-schemes.

4.7 Recollection. For a qcqs scheme X, we write Gal(X,,,) for the Galois category of the Zariski
oo-topos in the sense of Definition 3.23. Note that X, is the co-topos of sheaves on the spectral
topological space |X|. Hence by Recollection 3.29, for a profinite set S, the category of sections
Gal(X,,,)(S) is the poset of continuous quasicompact maps f : S — |X| ordered by pointwise
specialization: f < g if and only if for all s € S, we have f(s) e {g(s)}. In particular, Gal(X,,,)(x)
is the specialization poset of |X|, that we denote by X, Zsar.

4.8 Lemma. Let X be a qcqs scheme. Then there is a natural equivalence of co-topoi
ngopzar = Fun®*(Gal(X,,,), Cond(Ani)) .

Proof. Since X,,, is a spectral co-topos, in the sense of [8, Definition 9.2.1] with profinite stratified
shape given by Gal(X,,,), this follows from [80, Theorem 1.1]. O

We are interested in the above result because it allows us to compute 7 of the condensed
homotopy type of the pro-Zariski co-topos as the condensed classifying anima of Gal(X,,,). The
latter will be a quotient of the condensed set underlying Gal(X,,,) by an explicit equivalence rela-
tion. Furthermore, the next proposition will readily imply that this actually computes ngond(X ):

4.9 Proposition. The functor p* : Xprozar,<o = Xprogt,<o IS fully faithful.
In order to prove Proposition 4.9, we make use of the following construction:

4.10 Construction. Let X = Spec(R) be an affine scheme. Since the inclusion Zarj}ff =3 Et}ff
preserves finite limits, it admits a pro left adjoint

Hensy' : Pro(Etg‘(ff) - Pro(Zarf}ff) .

4.11 Definition (Zariski henselization). Let X = Spec(R) be an affine scheme. Given any Y e
Pro(Et}ﬁ), we call Hensy (Y) the Zariski henselization of Y in X.

412 Lemma. LetV e Pro(Et}ff). IfV is w-contractible, the unit morphism
V — Hensy (V)

is surjective.

Proof. Since V is w-contractible, we can use the universal property of Hensy (V) to show that

any pro-Zariski cover of Hensy'" (V) has a section. This in particular shows that Hensy (V) is

w-local, see [10, Lemma 2.4.2]. Since V — Hensy' (V) is flat and the image of a flat morphism
is closed under generization [30, Lemma 14.9], it suffices to see that all closed points are in the
image. We now assume thatim(V") C Hensg(ar(V) does not contain a closed point x. Since im(V) is

quasicompact, there is some quasicompact open H C Hensy' (V) containing im(V) while x ¢ H.
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Since H is quasicompact, we may find a covering by finitely many affines U; = Spec(R;) — H.
Since im(V') C H, it follows that the induced map

H U; ><Hens§(""r(V) V-V
i

is surjective and thus admits a sectiona: V — [[. U; XHens2*(v) V- By the universal property
of Zariski henselization, the composition

VvV — Hl‘ Ui ><Hens?f‘r(V) 4 Hi Ui

factors uniquely through some & : Hensy' (V) — ][, U;. Since the composite

v — ILU; Xpenszi(v) V. — 1, Ui — Hensy' (V)

recovers the unit V — Hensy (V), it follows by uniqueness that the composite

Hensy (V) e, I1, Ui —— Hensy (V)

zar zar

is the identity. In particular the U; cover Hensy (V) and thus H = Hensy (V'), which contradicts
that x & H. O

4.13 Lemma. Let X be an affine scheme, and F ¢ X;lffzar. Then p*F is the sheafification of
Pro(Et}ff) > W — F(Hensy (W)).

Moreover, if W is w-contractible, then p*F(W) = F(Hensy (W)).

Proof. The functor p* is given by sheafification of the left Kan extension along the map

1 Pro(Zard®) & Pro(E6d).
Explicitly, for F € X gfopzar the image is given as
0*F = (W  colim F(V))#
W—i(V)

for V e Pro(Zar¥™) and U e Pro(Eti). By the universal property of Hensy ", every map W — «(V)

factors uniquely over Hensy (W) e Pro(Zarj}ff), hence the colimit above reduces to

colim F(V) = F(Hensy (W)).
W-uV)

It remains to argue why sheafification can be omitted for w-contractible W. On the basis of
w-contractible affines weakly étale over X, the sheaf condition simplifies to preservation of finite
products. Since Hensy', being a left adjoint, preserves finite coproducts and F carries such to

finite products, the claim follows. O
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Proof of Proposition 4.9. We can immediately reduce to the case where X is affine. We want to
show that for any F € Xr55ar <o and any U e Pro(Zar;‘(ff) the unit evaluated at U

F(U) = p*(F)U)

is an isomorphism. For this, pick a w-contractible weakly étale X-scheme W with a surjection
W - U and a further w-contractible V with a surjection V. » W Xy W. Using Lemma 4.13, it
suffices to see that the canonical map

F(U) — lim (F(Hensy (W)) = F(Hensy (V)))
is an isomorphism. This is clear if we show that
Hensy"(V) = Hensy (W) - U

is the beginning of an augmented pro-Zariski hypercover. For this, first observe that since the sur-

jection W - U factors through the canonical map Hensy (W) — U, the rightmost morphism

above is surjective. Note that we have a commutative diagram

1% W xy W

| l

Hensy' (V) —— Hensy (W) Xy Hensy (W).

Here the top horizontal morphism is surjective by definition and the right vertical morphism is
surjective by Lemma 4.12. Thus the bottom horizontal morphism is also surjective, as desired.
O

4.14 Remark. Note that Proposition 4.9 is only true on the level of 0-truncated sheaves, i.e.,
sheaves of sets. Full faithfulness on the level of sheaves of anima would imply an equivalence of
the condensed homotopy type and the pro-Zariski shape (relative to condensed anima). There-
fore, it would also imply that the étale homotopy type of X agrees with the shape of the underlying
topological space of X, which is clearly false. However, it is true for everywhere strictly local
schemes X as one has X¢; = X,,, by [71, Corollary 2.5].

cond

4.2 An explicit description of 7

Together the results from the last section show:

4.15 Proposition. Let X be a gcgs scheme. Then there is a natural isomorphism of condensed sets
M (X) 2 mo(BOMGal(X 4yy)) -

Proof. We have a commutative triangle

Cond(Ani) , xhe

prozar
|
71.*
xyp
proét
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where 7 is induced by the morphism of sites

Pro(Setg,,) — Pro(XSonst): S S x X.

zar
Combining Lemma 4.8 and [80, Lemma 4.3], it follows that 7* has a left adjoint, that we denote
7ty. By Proposition 4.9, it follows that Trgond(X ) = my(74(1)). Then by Lemma 4.8, we can use the
same argument as in Proposition 3.36 to show that 74(1) ~ B Gal(X,,,), as desired. O

Thus, we may quite explicitly describe ngond(X ).

4.16 Remark. The next theorem involves sets of continuous quasicompact maps Maqu(S, T)
where S is a profinite set and T is a spectral space. Note that these are precisely those maps
such that the preimage of a quasicompact open is clopen. It then follows that these are precisely
continuous maps in the constuctible topology, i.e.,

Map, (S, T) = Map(S, Teonstry

Said differently, the inclusion of the full subcategory of profinite sets into the category of spectral
spaces and quasicompact maps admits a right adjoint, given by sending a spectral space T to the
underlying set of T equipped with the constructible topology.

4.17 Theorem. Let X be a qcgs scheme. Then for any extremally disconnected profinite set S, we
have
TeM(X)(S) = Map, (S, IX)/~
where f ~ g if and only if there is some n € N and quasicompact maps Sy, tq, ... ,Sp, t, © S = |X|
such that
fzs1 <128 <ty 225,51, 28,

where a < b if and only if a(s) € {b(s)} forall s € S. If S = B(M) for some discrete set M, we

furthermore have a canonical isomorphism

7_Egond()()(B(M)) ~ TC()((XzSar)M) :

Proof. By Proposition 4.15, the first part of the theorem reduces to showing that for every ex-
tremally disconnected profinite set S, we have

T(B™Gal(X7))(S) = Map (S, IX])/~ .

This follows by the description of Gal(X,,,) in Recollection 4.7 noticing that two maps f, g in
the poset Mapqc(S, |X1) are connected if and only if there exists a finite zig-zag of specializations

as indicated in the statement. If S = (M) for some discrete set M, we have by Proposition 2.22
Map, (B(M), |X]) ~ Gal(X,,)(B(M))
~ [ Gal(Xpa) () = [ [ X - O
M M
4.18 Construction. Let X be a qcgs scheme. The image of the condensed connected components
Tt(c)‘md(X ) under the left adjoint (—)QiSC : Cond(Ani) - Pro(Ani_,) coincides with the profinite
set of connected components 7,(X) € Pro(Setg,) C Pro(Ani) after 0-truncation. Indeed, by

Lemma 3.14, the above is given by the connected components of H’i‘oo (X). Thus, the 0-truncation
of the unit nggnd(x ) — Hfm (X) € Cond(Ani) gives a natural map of condensed sets

g X)) - mH(X).
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Theorem 4.17 shows that Ttgond(X ) gives the expected answer in some cases:

4.19 Corollary. Let X be a qcqs scheme with finitely many irreducible components. Then the
natural map of condensed sets
¢ M) = To(X)

is an isomorphism.

Proof. It suffices to check that ¢ is an isomorphism after evaluating at (M) for any discrete set
M. By Theorem 4.17, we need to see that the canonical map

(X)) = O

that sends a function M — |X| to the composite with |X| — 7,(X) is an isomorphism (note
that this is not immediate, since in general 7, does not commute with infinite products). It
is surjective by surjectivity of |X| — my(X). For injectivity, suppose that we have two maps
f,8: M — |X]| that agree after composing with 7. If the number of irreducible components of
X is n, it follows that we may connect any two points x, y € X in the same connected component
with a zig-zag of specializations involving at most 2n+1 other points. Thus we may also connect f
and g with a zig-zag involving 2n+1 other maps and thus [ f] = [g] in no((XZSar)M ),asdesired. [

4.20 Remark. For an alternative proof of Corollary 4.19, see [56, Proposition 2.2.25].

4.21 Recollection [24, Chapter 0, §2.3]. A spectral space T is valuative if, for each t € T, the set
of generizations of ¢ is totally ordered under the generization relation. Every point ¢ of a valuative
space T has a unique maximal generization, denoted t™2*.

The separated quotient of a valuative spectral space T is the quotient T5°P := T/ ~ by the
relation s ~ t if s ~ M3 By [24, Chapter 0, Corollary 2.3.18], TSP is a compact Hausdorff
space.

For the next result, recall the Galois category of a spectral space from Notation 3.28 and Rec-
ollection 3.29.

4.22 Corollary. Let T be a valuative spectral space. Then the natural map
TEO(Gal(Tzar)) — TP

is an isomorphism of condensed sets.

Proof. It again suffices to check this after evaluating at any f(M). So let & : f(M) — TSP be any
continuous map. Since the quotient map 7 : T — TSP is surjective, we may pickamapa: M —
T lifting «| ;. Using Proposition 2.22 as in Theorem 4.17, a extends to a quasicompact continuous
map a: B(M) — T and by construction we have wod|,; = als. By the universal property of
Cech-Stone compactification, we thus get 7oa = «, proving surjectivity. For injectivity, suppose
that we are given two maps f,g : M — T such that the composites with 7 agree. By the valuative
property, it follows that for any m € M, f(m) and g(m) specialize to the same maximal element
h(m). Thus we get a zig-zag
f<h>g

so that [ f] = [g] in mo(Gal(T,,,))(B(M)), proving injectivity. O
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4.23 Example. Corollary 4.22 shows that even if X is a connected scheme, ngond(X ) can be a
nontrivial condensed set. Concretely, we may take T to be the underlying topological space of
the adic unit disk. Then T is a connected spectral topological space, so there exists a ring R and
a homeomorphism T =~ |Spec(R)|. Thus Spec(R) is connected but ngond(Spec(R)) =TPisa
nontrivial compact Hausdorff space. In fact, this space is homeomorphic to the underlying space
of the corresponding Berkovich disk (cf. [44, Remark 8.3.2]).

Theorem 4.17 can also be used to show that for a general qcgs scheme X, the condensed set
Tc(c)Ond(X ) can be quite exotic (in particular, ngond(X ) is not generally quasiseparated in the sense
of Recollection 7.7). This is achieved in the following example.

4.24 Example (schematic Warsaw circle). Let X be a qcgs scheme with the property that any
two points may be connected by a zig-zag of specializations but such that the minimal length of
such a chain is not bounded by any natural number. Then we have

Trgond(X)(*) ~ o,

However, for any function f : N — |X| such that the minimal length of a zig-zag connecting
f(n) and f(0) is at least n, the function f and the constant function at f(0) yield different
elements in ng‘md(X )(B(N)). Thus, ng"nd(X ) is a nontrivial condensed set whose underlying set
is the point and therefore not quasiseparated. Indeed, if it was quasiseparated it would be gqcqs
and thus representable by a compact Hausdorff space.

Let us give a concrete example of a scheme satisfying these properties. Fix an algebraically
closed field k = k and write * = Spec(k). Let X € *pro¢t D€ @ scheme such that y(X) = N U oo,
i.e., the converging sequence of points together with its limit. Each connected component of X is
just a copy of . Take two copies X Ir =X ; = A}{ Xpt X of a scheme that, intuitively, is a sequence
of affine lines converging to another affine line. Fix two points, say 0, 1, on each copy of A}( and
glue X I“ and X;r to obtain a zigzag of A}{’s intersecting at 0’s and 1’s and converging to a copy of
A,. Picture:

“;y X: \
VA

Let us denote this scheme simply by X *. To formalize this gluing procedure, one notes that we
are gluing affine schemes along closed subschemes, and so the pushout exists (and is an affine
scheme again) by [72, Theorem 3.4].

Now, this scheme satisfies the condition of having specialization-distances between points
growing arbitrarily but it still needs a small correction: the points on the limit A}( are not joinable
by a specialization sequence with the points on the zigzag. To amend it, add a further copy of
Allc joining an arbitrarily chosen pair of k-points of the the leftmost line of the zigzag with the
limit line of X*. Let us denote by Xt this schematic "Warsaw circle’. One can check that X+
satisfies the desired properties.

*!ls

I x.
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4.3 Computation: I[T2" of rings of continuous functions

Let T be a compact Hausdorff space. We conclude this section by using Theorem 4.17 to compute
the condensed homotopy type of the ring of continuous functions C(T, C); we show that it is
0-truncated, and coincides with the condensed set represented by T. We accomplish this by
proving a more general result. To state it, recall that the ring C(T, C) has the property that every
prime ideal is contained in a unique maximal ideal (see Theorem A.24). Moreover, [67, Chapitre
VII, Proposition 4] shows that the local rings of C(T, C) at maximal ideals are strictly henselian.
We are able to compute the condensed homotopy types of rings satisfying these two properties.
To state our results, we first introduce some terminology.

4.25 Notation. Given a ring R, we write MSpec(R) C |Spec(R)| for the subset of maximal ideals,
endowed with the subspace topology.

4.26 Recollection (see Appendix A). A ring R is a pm-ring if every prime ideal of R is contained
in a unique maximal ideal. In this case, the space MSpec(R) is compact Hausdorff.

cond

First, we identify 7

of an arbitrary pm-ring.

4.27 Proposition. Let R be a pm-ring. Then there is a natural isomorphism of condensed sets
ng"nd(Spec(R)) =~ MSpec(R) .
This isomorphism is constructed in the course of the proof.

Proof. By Theorem A.9, the map of topological spaces |Spec(R)| — MSpec(R) that sends a prime
ideal p to the unique maximal ideal containing p is a continuous retraction of the inclusion.
This retraction is also continuous for the constructible topology and therefore defines a map of
condensed sets

MapTop(—, [Spec(R)|°"S) — MSpec(R) .

Furthermore it clearly respects the equivalence relation described in Theorem 4.17 and therefore
induces a map
Ttgond(Spec(R)) — MSpec(R) .

To check that this map is an isomorphism, it suffices to check this after evaluating at f(M) for
any set M. Using the explicit description given in Theorem 4.17 and the fact that MSpec(R) is
compact Hausdorff (Corollary A.10), this is immediate. O

Under stronger hypotheses, we compute the whole condensed homotopy type:

4.28 Theorem. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then TI™(Spec(R)) is O-truncated; hence there is a natural equivalence of
condensed anima

1< (Spec(R)) = MSpec(R) .

To show that TTS2™4(Spec(R)) is O-truncated, we use the description of the condensed homotopy
type via exodromy. We first prove some preparatory results about classifying anima of infinite
products.
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4.29 Lemma. Let I be a set and let (C;);c; be 0o-categories. Assume that for each i € I, there exists
a left adjoint functor A; : A; — C; where A; is an anima. Then all of the maps in the commutative
square

B([L;; A) —— I BA;
B(Hie[ Ai)J ‘Hiel B/li

B(I L €) —— I, BC:-
are equivalences of anima.

Proof. First observe that since each 4; is a left adjoint, the induced functor on products
LA T4 = 1L, G

is also a left adjoint. Since each A; is an anima, the top horizontal map is an equivalence. Since
11,.; 4 and each 4; is a left adjoint and the functor B: Cat,, — Ani sends left adjoints to
equivalences [15, Corollary 2.11], the vertical maps are also equivalences. Thus, by the 2-of-3
property, the bottom horizontal map is an equivalence, as desired. O

4.30 Example. Let I be a set and let (C;);; be co-categories. Assume that for each i € I, each
connected component of the co-category C; admits an initial object. Then the hypotheses of
Lemma 4.29 are satisfied where each A4; is the set of initial objects of connected components of
C; and 4; is the inclusion. In particular,

B([ Iy € = I 1, BC:
is O-truncated.
We also need the following criterion for detecting when a condensed anima is O-truncated:

4.31 Lemma. Let n > 0 be an integer. Then a condensed anima A is n-truncated if and only if for
each set M, the anima A(B(M)) is n-truncated.

Proof. Since every extremally disconnected profinite set is a retract of the Cech-Stone com-
pactification of a set, this follows from the fact that every retract of an n-truncated anima is
n-truncated. O

Proof of Theorem 4.28. Note that, in light of Proposition 4.27, the final statement follows from
the claim that Hg‘o’“d(Spec(R)) is O0-truncated; so we just show this. Let us write X = Spec(R).
By Lemma 4.31, it suffices to show that for every set M, the classifying anima of the category
Gal(X)(B(M)) is O-truncated. Together, Recollection 3.31 and Proposition 2.22 show that

Galx)(B(M)) = [ Gal)(mp) = [ PtXe) -

meM meM

So by Example 4.30, it suffices to show that every connected component of Pt(X,) has an initial
object. This last statement is immediate from the assumption that R is a pm-ring and all local
rings at maximal ideals are strictly henselian. O

We now derive some consequences of Theorem 4.28. The first is a computation of the étale
homotopy type of these pm-rings, which appears to be new.
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4.32 Corollary. Let R be a pm-ring with the property that all local rings at maximal ideals are
strictly henselian. Then there is a canonical equivalence of proanima

Hitoo (Spec(R)) = TI_,,(MSpec(R)) .

Here, TI .., (MSpec(R)) denotes the shape of the compact Hausdorff space MSpec(R). See Nota-
tion 2.24.

Proof. We apply the functor (—)Qisc : Cond(Ani) —» Pro(Ani_,,) to the equivalence in Theo-

rem 4.28. To conclude, note that by Lemma 3.14, we have

159" (Spec(R)):. . = TI¢_(Spec(R))

disc
and by Lemma 2.26 we have
MSpec(R)].. = .o (MSpec(R)) . O
Finally, we turn to the special case of rings of continuous functions.

4.33 Corollary. Let T be a topological space and let C,(T, C) denote the ring of bounded continuous
functions to C. Then there are natural equivalences

T3 (Spec(Cy(T, ©))) = B(T)
and
%, (Spec(Cy(T, C))) = Moo(B(T)).
4.34. Note that if T is compact Hausdorff, then 3(T) = T and C, (T, C) = C(T, C).

Proof. By the universal property of Cech-Stone compactification, the natural map T — B(T)
induces an isomorphism of rings

C(B(T),C) = Cy(T,C).

By Theorem A.24, the ring C(3(T), C) is a pm-ring and by Theorem A.32 there is a natural
homeomorphism B(T) = MSpec(C(B(T), C)). Furthermore, [67, Chapitre VII, Proposition 4]
shows that the local rings of C(3(T), C) at maximal ideals are strictly henselian. Thus the claim
follows from Theorem 4.28 and Corollary 4.32 applied to R = C(B(T), C). O

4.35 Remark. Let T be a compact Hausdorff space that admits a CW structure and ¢t € T. Since
T admits a CW structure, the shape I1(T) coincides with the underlying anima of T. Hence
Corollary 4.33 shows that, up to protruncation, the étale homotopy type of Spec(C(T, C)) co-
incides with the underlying anima of T. In particular, the SGA3 étale fundamental group of
Spec(C(T, C)) at the maximal ideal of functions vanishing at ¢ coincides with the usual funda-
mental group 7, (T, t).

5 Fiber sequences

Let k be a field with separable closure k D k, and let X be a qcgs k-scheme. Write X for the
basechange of X to k. Then the naturally null sequence of étale homotopy types

(5.1) e, (Xp) — 04 (X) — BGal,
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is a fiber sequence, see [36, Theorem 0.2]. The existence of this fiber sequence implies the usual
fundamental exact sequence for étale fundamental groups [STK, Tag 0BTX; SGA 1, Exposé IX,
Théoréme 6.1].

The first goal of this section, accomplished in § 5.1, is to prove the analogue of the funda-
mental fiber sequence (5.1) for the condensed homotopy type. The second goal of this section,
accomplished in §5.2, is to show that given a smooth proper morphism of schemes X — S, up
to suitable completion, the homotopy-theoretic fiber of the induced map I1524(X) — T19"4(S)
agrees with the condensed homotopy type of the scheme-theoretic fiber. See Theorem 5.12.

5.1 The fundamental fiber sequence for the condensed homotopy type

Using the description of H‘;g“d(X ) as the condensed classifying anima BndGal(X), the same
methods as in [36] allow us to prove the fundamental fiber sequence for the condensed homotopy
type. The key observation is that even though B does not preserve pullbacks, it preserves
pullbacks along morphisms between condensed anima. Let us now explain this point.

5.2 Recollection. Let C be an co-category with pullbacks and D C € a full subcategory such that
the inclusion admits a left adjoint L : € — 2. We say that the localization L is locally cartesian
if for any cospan U — W « V in € with U, W e D, the natural map

L(U Xy V) = U Xy L(V)
is an equivalence. See [26, §1.2; 43, §3.2].
5.3. Importantly, the localization B: Cat,, — Ani is locally cartesian; see [36, Example 3.4].

5.4 Corollary. Let C be an co-category with finite limits and let L : € — D be a locally cartesian
localization that also perserves finite products. Then the localization L™ : Cond(€) — Cond(D)
is locally cartesian.

Proof. By definition, the functor
Loond : Fun*(Extr?, €) - Fun™(Extr’?, D)

is given by pointwise application of L : € — D. Since finite limits in Cond(€) and Cond(D) are
computed pointwise, the claim follows from the assumption that the localization L is locally
cartesian. O

5.5 Example. The localization B4 : Cond(Cat,,) — Cond(Ani) is locally cartesian.

5.6 Corollary. Let f : X — S be a morphism between qcqs schemes, and let § — S be a geometric
point of S. If dim(S) = 0, then the naturally null sequence

nEMXy) — TN — TIL(S)

is a fiber sequence in the co-category Cond(Ani). As a consequence, given a geometric point X — Xj,
the induced sequence of pointed condensed sets

1 — 7.I:iond()(@ )2) SN TCiond(X, )75) SN Tciond(s’ §) SN Ttgond(X§) SN Tc(c)ond(X) N Tcgond(s)

is exact.
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Proof. For the first claim, note that by [36, Corollary 2.4] and the fact that the functor Pro(Cat,,) —
Cond(Cat,,) preserves limits, the natural square

Gal(X;) —— Gal(X)

| l

Gal(§) —— Gal(S)

is a pullback square in Cond(Cat,,). Moreover, since 3 is a geometric point, Gal(s) ~ . Since
dim(S) = 0, by Corollary 3.37 the condensed oo-category Gal(S) is a 1-truncated condensed
anima. The claim now follows from Proposition 3.36 and the fact that the localization B is
locally cartesian.

To conclude, note that since nggnd(S) ~ Gal(S) is 1-truncated, the second claim follows from
the first by taking homotopy condensed sets. O

5.7 Corollary. Let k be a field with separable closure k, let X be a qcgs k-scheme, and fix a geometric
point X — X;. If ng"nd(X @) = 1, then the sequence of condensed groups

1 — Tcgond(Xlg,J'c) — niond(X, X) — Galp, — 1

is exact.

5.8 Remark. By Corollary 4.19, the hypotheses of Corollary 5.7 are satisfied if X is geometrically
connected and X} has finitely many irreducible components.

As an application of the fundamental fiber sequence and Corollary 4.33, we compute of the
condensed homotopy type of rings of continuous functions to R:

5.9 Corollary. Let T be a compact Hausdorff space. Then there is a natural equivalence of con-
densed anima
1$9"d(Spec(C(T, R))) ~ T x BGaly .

Proof. As explained in Lemma A.26, the natural ring homomorphism C(T,R) ®g C — C(T,C)
is an isomorphism. Hence by the fundamental fiber sequence

Hggnd(spec(c(T’ Q) — Hggnd(Spec(C(T, R))) — BGaly

of Corollary 5.6, we just have to show that action of Galg on Hf,gnd(Spec(C(T ,C))) is trivial. By
Theorem 4.28, we have natural identifications

1" (Spec(C(T, C))) ~ MSpec(C(T,C)) ~ T .
Thus it suffices to show that map on maximal spectra
MSpec(C(T, C)) — MSpec(C(T, C))

induced by complex conjugation is the identity. To see this, note that by Theorem A.32, each
maximal ideal is given by all functions T — C that vanish at some fixed ¢t € T, and a function
vanishes at a point if and only if its conjugate does. O
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5.2 Geometric and homotopy-theoretic fibers

Let f: X — S be a smooth and proper morphism of schemes. The goal of this subsection is
is to show that, up to suitable completion, the homotopy-theoretic fiber of the induced map
IO f) : TIOM(X) — MI"(S) agrees with the condensed homotopy type of the scheme-
theoretic fiber.

5.10 Notation. For a morphism of schemes f : X — S and a geometric point § — S, we denote

by
X5 =X Xs S(5)

the Milnor ball of f at 5. Here S(5) denotes the strict localization at 3.
5.11 Recollection (Z-completion). Let X be a nonempty set of prime numbers.

(1) We write Aniy C Ani, for the full subcategory spanned by those n-finite anima all of whose
homotopy groups are Z-groups (i.e., their order is a product of elements of X).

(2) The inclusion Pro(Anis) & Pro(Ani,) admits a left adjoint (—)g that we refer to as Z-com-
pletion.

(3) We also write (—)/E\ : Cond(Ani) — Pro(Aniy) for the left adjoint of the inclusion

Pro(Aniy) & Pro(Ani,) & Cond(Ani) .

As a consequence of the exodromy description of the condensed homotopy type, we can
apply a profinite version of Quillen’s Theorem B, see §C.2, to get the following:

5.12 Theorem. Let f : X — S be a smooth and proper morphism between qcqs schemes and let
§ — S be a geometric point. Let T be a set of primes invertible on S. Then the induced map

Hggnd(Xs‘) - ﬁbs‘(nggnd(f )
becomes an equivalence after X-completion.

Proof. We want to apply Theorem C.7 to the functor Gal(f) : Gal(X) — Gal(S) induced by f. To
verify that the assumptions of Theorem C.7 are satisfied, we need to see that for any specialization
n: t’ - fin S, the induced map

(5.13) Bed(Gal(X);/) — B"(Gal(X)y )

becomes an equivalence after Z-completion.
Recall that by [8, Corollary 12.4.5], we have a natural equivalence of underlying co-categories

(5.14) Gal(S(;)) = Gal(S)g/ .

Using Observation 6.5 below, one can show that this equivalence refines to an equivalence
of condensed co-categories, see [81, Proposition 7.3.3.7] for more details. Furthermore, [36,
Proposition 2.4] implies, that the natural functor

Gal(X(f)) - Gal(X)f/ s
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induced by the equivalence (5.14), is an equivalence of condensed co-categories as well. Thus
by Lemma 3.14, the Z-completion of the map (5.13) identifies with the specialization map

I8 Xp)h - T8 X)) -

By [35, Proposition 2.49], this specialization map is an equivalence. Thus, Theorem C.7 implies
that the natural map I1$2™4(X ) = fib(T12"( 1)) becomes an equivalence after S-completion.
Finally, note that by Lemma 3.14 and [35, Corollary 2.39], the natural map

IEM(Xy) = TEM (X ()
becomes an equivalence after X-completion. O

5.15 Remark. In the setting of Theorem 5.12, the canonical map ™ (X;) — fibs(IT24(£)) is
not generally an equivalence before Z-completion. The reason why this fails is that the proper
and smooth base change theorems do not hold for arbitrary proétale sheaves; they only hold for
constructible étale sheaves.

5.16 Remark. Theorem 5.12 is an analogue of Friedlander’s result [22, Theorem 3.7]. Since we
do not have to require that the base S be normal, at the cost of working with a more complicated
homotopy type, our result holds in a more general setup. However, since the X-completion
functor does not preserve fiber sequences, it is also not immediate how to recover Friedlander’s
result from ours.

6 Integral Descent

The goal of this section is to prove that the condensed homotopy type satisfies integral hyperde-
scent. Let us start by formulating what we mean by this more precisely.

6.1 Definition. Let X be a scheme and € an co-category.

(1) We call an augmented simplical object X, — X an integral hypercover if for each n > 0, the
morphism X,, — X is integral and X, — X and X,, — (cosk,_;(X.)), are surjective.

(2) We call a functor F : Sch™® — @ a hypercomplete integral cosheaf if F sends integral hyper-
covers to colimit diagrams.

The main goal of §6.1 is to show that 19" (—) is a hypercomplete integral cosheaf, which we
achieve in Corollary 6.16. In fact, our methods will show that already Gal(—) is a hypercomplete
integral cosheaf of condensed categories. In §6.2, we use some of the results in this section to
characterize those morphisms of schemes, for which the étale co-topos is compatible with base
change; this included integral morphisms.

6.1 Integral morphisms and right fibrations

In this subsection, we show that for an integral morphism of schemes, the induced functor on
Galois categories is a right fibration of condensed categories. We begin by recalling the notion
of a right fibration of condensed co-categories:
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6.2 Definition. We say that a functor of condensed co-categories f : C — D is a right fibration
if and only if the commutative square

Fun®([1], €) —L° Fun®([1], D)

evll J/EV]

e D

is a cartesian square in Cond(Cat,,).

6.3 Remark. Definition 6.2 is a special case of the notion of a right fibration of simplicial
objects in a general co-topos B, as introduced in [57, Definition 4.1.1]. In particular it follows
from the discussion in loc. cit. that right fibrations in Fun(A°P, Cond(Ani)) are the right class
in an orthogonal factorization system. The left class consists of the final maps, i.e., the smallest
saturated class which contains all maps of the form {n}xS < [n]xS forn € Nand S € Pro(Setg,,).
See [57, Lemma 4.1.2].

6.4 Remark. A functor f: € — D of condensed co-categories is a right fibration if and only
if for every profinite set S, the functor f(S): C(S) — D(S) is a right fibration of co-categories.
Indeed, the square in Definition 6.2 is cartesian if and only if this is true after evaluation at
every profinite set S. Under the equivalence Fun®"4([1], €)(S) ~ Fun([1], €(S)), the claim then
follows by the characterization of right fibrations via a corresponding cartesian square, see [14,
Proposition 3.4.5].

In the cases we care about, being a right fibration can often be detected on the level of
underlying categories, which we deduce from the following observation.

6.5 Observation. Recall from [SAG, Theorem E.3.1.6] that the functor
lim: Pro(Ani,) — Ani

is conservative. It follows that the functor lim, : Cat(Pro(Ani,)) — Cat., given by postcompo-
sition with lim is also conservative.

6.6 Lemma. Let f : C — D be a functor in Cat(Pro(Ani,)) considered as a functor of condensed
oo-categories. If the underlying functor of co-categories is a right fibration, then f is a right fibration
of condensed co-categories.

Proof. By definition, f is a right fibration if and only if the induced map
6.7) Fun®™([1], €) —» Fun®"4([1], D) x5 €

is an equivalence of condensed co-categories. Since € and D are in Cat(Pro(Ani,)), it follows
that Fun®"4([1], ©) and Fun®([1], D) are also in Cat(Pro(Ani,)). Thus, by Observation 6.5,
the comparison map (6.7) is an equivalence if and only if it an equivalence on underlying co-
categories. Since taking underlying oo-categories commutes with pullbacks, this proves the
claim. O

By Recollection 3.31, we immediately deduce the following.
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6.8 Corollary. Let f : X — Y be a morphism of qcqs schemes. Then the induced functor
Gal(f) : Gal(X) — Gal(Y)
is a right fibration of condensed categories if and only if this is true on the underlying categories.

6.9 Proposition. Let f: X — Y be an integral morphism of qcqs schemes. Then the induced
functor
Gal(f): Gal(X) — Gal(Y)

is a right fibration of condensed categories.

Proof. By Corollary 6.8, it suffices to check this on underlying categories. The statement about
underlying categories appears in [8, Proposition 14.1.6]; for the convenience of the reader, we
give a quick proof here.

Throughout the proof, we simply write Gal(—) for the underlying category as well. By [STK,
Tag 09YZ], any integral morphism f : X — Y with Y qcgs can be written as f = lim; f; for
some cofiltered system of finite morphisms f; : X; — Y. Since right fibrations are stable under
limits, by the continuity of étale co-topoi [SGA 4,;, Expose VII, Lemma 5.6; 16, Proposition 3.10],
we may assume that f is finite. Since Gal(X) and Gal(Y)) are 1-categories, by [Ker, Tag 015H] it
suffices to show that any lifting problem of the form

{1} —— Gal(X)

[ 3” lGal(f)

[1] —— Gal(Y).
has a unique solution. Writing y for the source of the map s, this diagram factors as
{1} _— Gal(Y)y/ xGal(Y) Gal(X) _— Gal(X)

[ =] |

[1] = Gal(Y);; ———— Gal(Y),

N

and it suffices to show that this induced lifting problem has a unique solution.
By [8, Corollary 12.4.5] and [36, Corollary 2.4], we can identify

Gal(Y))-,/ ~ Gal(Y()-,)) and Gal(X) XGal(Y) Gal(Y(J-,)) ~ Gal(X Xy Y(y)) .

Moreover, since f : X — Y is finite, by [STK, Tag 04GH] we have a coproduct decomposition
X Xy Y5 = Hxieffl(y) X(x,)- Now the map

{1} > Gal(Y ) Xcaiv) Gal(X) =~ ] | Gal(Xx,))
i

factors through Gal(X(xiO)) for some iy. Hence, writing X := X; , we finally arrive at a lifting
problem of the form
{1} — Gal(X(y)) —— Gal(X)

[ ] e

[1] — Gal(Yy)) — Gal(Y).
\/r

N
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Here, existence and uniqueness of a lift is clear. Let 3’ be the target of the map s, determined
by {1} — Gal(X(s)). Note that X is the initial object of Gal(X(x)) ~ Gal(X)x/, and also the only
object lifting y. So if there exists a lift, it has to be the unique map from x — x’ for %’ the lift of
y'. Since ¥ is the initial object of Gal(Y(y)) =~ Gal(Y)y/, it is clear that X — x' actually lifts the
map s : y — j' we started with. O

6.10 Corollary (Kiinneth formula for integral morphisms). Let X — Y be an integral morphism
of gcgs schemes. Then for any qcgs scheme Y' and morphism Y' — Y the natural functor

Gal(X Xy Y,) d Gal(X) XGal(Y) Gal(Y’)
is an equivalence.

Proof. As integral morphisms and right fibrations are stable under pullbacks, by Proposition 6.9
both functors

Gal(pr,) : Gal(X xy Y') - Gal(Y") and pr, : Gal(X) Xgayy) Gal(Y') — Gal(Y”)
are right fibrations. Therefore, by [Ker, Tag 01VE] it suffices to see that the natural functor
Gal(X xy Y') = Gal(X) Xgay) Gal(Y")

becomes an equivalence after taking fibers over any j’ € Gal(Y”). This holds by [35, Corollary 2.4].
O

6.11 Lemma. Let f: C — D be a morphism in Cat(Pro(Ani,)). Then f is surjective as a functor
of condensed co-categories (i.e., for all S € Extr, the functor C(S) — D(S) is surjective) if and only
if the induced functor on underlying co-categories f(x): C(x) — D(x) is surjective.

6.12 Observation. The inclusion Cond(Ani) — Cond(Cat,,) also admits a right adjoint. We
denote this right adjoint by (—)~.

Proof of Lemma 6.11. First, by definition, if f is a surjective functor of condensed co-categories,
then f(x): C(x) — D(x)is surjective. Conversely, if f(x) : C(x) — D(x) is surjective, then it fol-
lows from [SAG, Corollary E.4.6.3] that the induced map €= — 2D is an effective epimorphism
in Pro(Ani,;) C Cond(Ani). Now let S € Extr. Since any map S — 2 in Cond(Cat,,) factors
through D~ and S is projective in Cond(Ani) it follows that we can find a lift in the diagram

eﬁ

S — D
which completes the proof. O

6.13 Corollary. Let f: X — Y be a surjective morphism of qcgs schemes. Then the functor of
condensed categories Gal(f) : Gal(X) — Gal(Y) is surjective.

Proof of Corollary 6.13. By Lemma 6.11, we just need to see that the induced functor on cate-
gories of points Gal(X)(x) — Gal(Y)(x) is surjective. Since any point of X, is represented by a
geometric point X — X, it is clear. O

Right fibrations automatically satisfy descent in the following sense:
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6.14 Definition. An augmented simplicial co-category C. — C is a hypercover if for each n € N,
the induced functor €,, — (cosk,_;(C.)), is surjective.

6.15 Lemma. Let C, — C be a hypercover in Cat,,, and assume that for each n € N, the induced
functor C, — Cis a right fibration. Then colimpoep C, = C.

Proof. By straightening-unstraightening, our given hypercover translates to a hypercover of the
terminal object in the co-category RFib(€) ~ PSh(C) of right fibrations over €. Furthermore,
the inclusion RFib(C) C Cat,, ;¢ preserves limits and colimits (the case of limits is clear as right
fibrations are defined via a lifting property, for colimits see [66, Corollary A.5]). Since RFib(C)
is a presheaf co-topos and therefore hypercomplete, the claim follows. O

We can now deduce the desired descent results.
6.16 Corollary.

(1) The functor Gal : Sch® — Cond(Cat,,) is a hypercomplete integral cosheaf.

(2) The functor (—)gffét : (Sch™®)°r . Cat, with functoriality given by pullbacks is an integral
hypersheaf.

(3) The functor 1™ : Sch®®® — Cond(Ani) is a hypercomplete integral cosheaf.

Proof. By [80, Theorem 1.2], we have a natural equivalence

X;ryoit ~ Fun®®(Gal(X), Cond(Ani)),
hence second assertion is an immediate consequence of the first. By Proposition 3.36, the third
assertion is also an immediate consequence of the first. Thus, we only need to prove the first
assertion.
Using Corollary 6.10, it follows that for any integral hypercover X, — X and n € N, the
canonical map
Gal(cosk,_;(X.),) — cosk,_;(Gal(X.)),

is an equivalence. Thus, Proposition 6.9 and Corollary 6.13 imply that Gal(X,) is a hypercover
of right fibrations of condensed categories. Since sifted colimits are computed pointwise in the
co-category Cond(Cat,,) = Fun™(Extr®?, Cat,,), the claim follows by combining Remark 6.4
and Lemma 6.15. O

We can also recover the schematic description of the over category Gal(X),; given in [8,
Corollary 12.4.5]:>

6.17 Corollary. Let X be a gcqs scheme, let X — X be a geometric point, and let X denote
the strict normalization of X at X in the sense of [8, Notation 12.4.2]. Then the natural integral
morphism f : X® — X induces an equivalence of condensed categories

Gal(X®) = Gal(X) s .

>The description of the under categories of Gal(X) in terms of strict henselizations in loc. cit. is immediate from the
definition. The description of over categories in terms of strict normalizations is less obvious, so we decided to include
an argument here.
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Proof. Since the morphsism f is integral, by Proposition 6.9 the functor of condensed categories
Gal(f) is a right fibration. Hence for % : * — Gal(X®®)) - Gal(X), the induced functor

[zt Gal(X®) 5 — Gal(X) 5

is an equivalence of condensed categories. The condensed category Gal(X®) already has a
terminal object induced by the generic point of X®), which is given by X — X®), cf. [56, Theo-
rem 2.4.21]. We conclude using that

Gal(XW) ~ Gal(X®™) ; ~ Gal(X) 5 - O

Finally, using some of the machinery developed in [57], we can also deduce integral basechange
for proétale hypersheaves. We do not need this in the rest of this article, but it might be of inde-
pendent interest.

6.18 Proposition. Let

!

be a cartesian square of qcqs schemes where f is integral. Then the induced square

( X;)hyp 9= thp

proét proét

& |+

h h
ynHr ——yr
proét DPx proét

is horizontally left adjointable, i.e., the natural exchange transformation p* f,. — g.q* is an equiv-
alence.

Proof. By [80, Corollary 1.2], this square is identified with the square

Gal(q).
_—

Fun®(Gal(X"), Cond(Ani)) Fun®®(Gal(X), Cond(Ani))

Gal(g), Gal(f)s

Fun*(Gal(Y"), Cond(Ani)) ———— Fun™(Gal(Y), Cond(Ani))

Since f is integral, Proposition 6.9 shows that Gal(f) is a right fibration, and Corollary 6.10
shows that the natural map Gal(X") — Gal(X) XGal(Y) Gal(Y') is an equivalence. Because right
fibrations of condensed oo-categories are proper functors [57, Proposition 4.4.7], the the above
square is horizontally left adjointable. O

6.2 Digression: strongly kiinnethable morphisms of schemes

‘We conclude this section by explaining at what level of generality the Kiinneth formula for étale
oo-topoi (equivalently, Corollary 6.10) holds.
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6.19 Definition. We call a morphism of schemes X — Y strongly kiinnethable if for any mor-
phism Y’ — Y the induced map

4 /
X Xy Y"er = Xet Xy, Yy
is an equivalence.

6.20 Remark. Since all co-topoi involved in Definition 6.19 are 1-localic, being strongly kiin-
nethable is equivalent to the canonical geometric morphism

Y/

!/
(X Xy YDet,<0 = Xet,<0 Xvy <o Yer.<o

of 1-topoi being an equivalence.

6.21 Proposition. Let f : X — Y be a morphism of finite presentation. Then f is strongly kiin-
nethable if and only if it is quasi-finite.

Proof. Letus first assume that f is quasi-finite. Since open immersions are strongly kiinnethable
by [HTT, Remark 6.3.5.8], we may immediately reduce to the case where X, Y, and Y’ are affine.
Applying Zariski’s main theorem, we can factor f as an open immersion followed by a finite
morphism. Thus we may assume that f is finite.

We have to check that the induced map
(6.22) (X Xy Yet,.<0 = Xet,<0 Xvg o Yig <o
is an equivalence. By Corollary 6.10, it induces an equivalence of categories of points. Further-
more it follows from the site-theoretic description of the fiber product of topoi [45, Exposé XI,
§3] that (6.22) is a coherent geometric morphism of coherent topoi. Thus, the Makkai-Reyes con-
ceptual completeness theorem [SAG, Theorem A.9.0.6] implies that this geometric morphism is
an equivalence.

For the converse, assume that f is not quasi-finite. Then at least one geometric fiber of f
is not quasi-finite. Since taking geometric fibers is compatible with taking étale co-topoi [36,
Proposition 2.3], we may reduce to the case where Y = Spec(k) is the spectrum of a separably
closed field k. Furthermore, we may always modify X by quasi-finite maps to reduce to the
case where X is integral of dimension at least 1. By Noether normalization, there exists a finite
surjective map h: X — AZ. Let X, — AZ denote the Cech nerve of h. Now if f were strongly
kiinnethable, then since the maps X,, — Spec(k) are the composite of a finite map d, : X,, > X
and f, it would follow that also all maps X,,, — Spec(k) would be strongly kiinnethable as well.
Thus for every k-scheme Y’ and every m > 0, the induced map

Gal(X,, x Y') - Gal(X,,) x Gal(Y")

would be an equivalence. But by integral descent (Corollary 6.16), after passing to the colimit
over A°P, this would imply that the canonical map

Gal(A} x Y') — Gal(A}) x Gal(Y")

is an equivalence.
Thus we may assume that X = A}’ and therefore even that X = A}{. Now let Z = A}{ as well.
This would imply that the canonical map

Gal(Ai) > Gal(A}{) X Gal(A}()
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is an equivalence. In particular, it would induce an equivalence on underlying posets and thus
an isomorphism of specialization posets

A2 - @Ah° x@l’
k’zar k’zar k

’
zar

which is a contradiction. O
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Part 11
The condensed fundamental group

The purpose of this part is to analyze the fundamental group of the condensed homotopy type
and its relationship to the étale and proétale fundamental groups. We start by showing that,
surprisingly, 7 Cor‘“‘(Al ) is nontrivial (see Corollary 7.4). This can be viewed as saying that there
exists a nontr1v1a1 proetale local system of condensed rings on Al

In § 7, we show that a mild quotient of the condensed fundamental group of A1 indeed
becomes trivial. Specifically, Clausen and Scholze introduced a localization A +— Aqs of the
category of condensed sets called the quasiseparated quotient [69, Lecture VI]. For topological
groups, this is analogous to the Hausdorff quotient. We show that if X is a topologically noethe-
rian scheme that is geometrically unibranch, then there is a natural isomorphism of condensed
groups

ned(X, %)% = né'(X, %),

see Theorem 7.17. Under mild hypotheses on the scheme (e.g., being Nagata), we also prove a
van Kampen formula for the quasiseparated quotient of the condensed fundamental group that
only involves topological free products, topological quotients, and the étale fundamental group
of the normalization, see Theorem 7.35.

In §8, we turn to the relationship between the condensed fundamental group and the proé-
tale fundamental group introduced by Bhatt and Scholze [10, §7]. One of the special features

of proe (X) is that it is a Noohi group. We show that if X is topologically noetherlan the Noohi

completlon (suitably extended to condensed groups) of chond(X ) recovers TC (X ), see Theo-
rem 8.12.

7 The quasiseparated quotient of the condensed fundamen-
tal group

In §7.1, we begin by using the Galois category description of the condensed homotopy type
to show that ncond(A ) is nontrivial. The rest of the section is dedicated to studying the qua-

siseparated quotient of ncond(A ). In §7.2, we recall the basics on quasiseparated quotients of
condensed sets and prove some fundamental results about the quasiseparated quotient. In §7.3,
we show that the quasiseparated quotient of ncond of a geometrically unibranch and topologically

noetherian scheme recovers nit. In §7.4, we prove a van Kampen formula for the quasiseparated

quotient of the condensed fundamental group, see Theorem 7.35.

7.1 7°(AQ) is nontrivial

In this subsection, we show that niond can behave wildly, even in geometrically very simple

situations. For simplicity, we work over the complex numbers C in this section. However, we
believe that many analogous statements hold over any algebraically closed field of characteristic
0.

7.1 Notation. For a topological group G and an (abstract) subgroup H < G, let H™ denote the
group-theoretic normal closure of H in G. Let

thc = ﬁ
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be the topological normal closure of H in G, i.e., the smallest closed normal subgroup of G con-
taining H or, equivalently, the topological closure of H" in G.

7.2 Proposition. Let S C C be a subset. Let us write

Ap S = Spec(C[t][(t —a)™! |aeS)).

Let Fre be the free profinite group on the underlying set of C. Let N be the abstract normal subgroup
of Fr¢ generated by Z(a) for all a € C~ S. Write 1) for the generic point of AlC and 7] for the geometric
generic point induced by choosing an algebraic closure of C(T). There is a short exact sequence of
(abstract) groups

1 — Ng — Fre - 7'c‘;°nd(A1c NS, (%) = 1.

To prove Proposition 7.2, we make use of an alternative description of BGal(X)(x) provided by
the following lemma.

7.3 Lemma. Let X be a qcgs scheme. Then there is a natural equivalence

BGal(X)(x) ~ col<irn Dec(Gal(X)) .
sd(X;,)°
Proof. Letussimplify notation and write Gal(X) instead of Gal(X)(). Then the functor Gal(X) —
X ZSM is a stratified space and under the equivalence [8, Theorem 2.7.4] it corresponds to a functor
Dec(Gal(X)) : sd(X5,, )" — Ani.

Here sd(X Zgar) denotes the subdivision poset of XZSM, see [8, Notation 1.1.8]. Furthermore, observe
that colim Dec(Gal(X)) ~ BGal(X). Indeed, the composite functor

<

XXZar .
Ani —5 Stry< —=— Fun(Sd(Xzsar)Op’Anl)

preserves colimits and thus coincides with the constant diagram functor from Ani whose left
adjoint is given by taking the colimit. O

Proof of Proposition 7.2. Let us simplify notation and write X = A}: \ S and Gal(X) instead of

Gal(X)(x). We compute BGal(X) using Lemma 7.3. Note that sd(XZSar) consists of elements of
the form

{a}, 9}, and  {a<n}

for any a € C~ S and the ordering is given by {a} < {a < 5} and {n} < {a < n}. Furthermore, the
functor Dec(Gal(X)) : sd(Xzsar)Op — Ani can be explicitly described by applying & followed
by materialization to the diagram sd(XZSar)Op — Sch that sends {a} < {a < n} > {n} to the span
of schemes

Spec(C[T1f,,)) «—— Spec(C[T] )~ {a} —— Spec(C(T)),
see [8, Example 12.2.2]. We for each a € C~ S, we now choose a lift 7,

Spec(CITIM )~ {a}

Ta 7 l

Spec(C(T)) ———— Spec(C(T))
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In particular, we can lift the above span to a span of pointed schemes and therefore also Dec(Gal(X))
lifts to a diagram of pointed anima Dec(Gal(X)),.. Using that m; is an equivalence between
pointed, connected and 1-truncated anima and the category of groups, [HTT, Proposition 7.2.12],
we may thus compute

m(BGal(X),7) ~ c01<im 1, (Dec(Gal(X)),.) .

sd(Xr

Now for any {a} < {a < 5} > {n}, the corresponding span in groups is given by
* —— Tr?(Spec(C[T]fﬁ)) v{a},7,) —— 7w (Spec(C(T)), 7)

and the colimit over sd(X3;,)°P is given by taking the quotient of n‘it(Spec(C(T)), 7) = Galg(p) by
the (abstract) normal closure of the subgroup generated by the images of all the decomposition
groups

Dy = 7' (Spec(CIT ] ~{a})

By Theorem B.3, there is an isomorphism
Fre = Gale(r) = my'(Spec(C(T)), 7)

under which the preimage of D,, is, up to conjugation, given by Z(a). It follows that 7; (BGal(X), 77)
is isomorphic to the quotient of Fr¢ by the smallest (abstract) normal subgroup containing Z(a)
forall a € C\ S, as desired. O

7.4 Corollary. Let X be a geometric generic point of Aé. Then
dial =
(A X) # 1.
In fact, even the underlying group 7't§°“d(A1 ,7)(*) is nontrivial.

Proof. Consider the canonical continuous map IAJrC - HceC Z that carries a generator a to the

unit vector at a. Note that the (abstract) normal subgroup N lands in the subgroup P, Z.
Thus, by Proposition 7.2, we get a short exact sequence of abstract groups

1 N¢ Fre AL M) —— 1
1 @aeC 2 1_[aeC /Z\ Q 1’

where Q # 1 denotes the abstract quotient. The middle vertical map is surjective (because it is
dense, the source is profinite and the target is Hausdorff). Therefore, the right vertical map is
also surjective. Thus Tri"nd(A1 (%) # 1. O

The following remark and example, while fitting best the current subsection, use the notion
of quasiseparatedness of condensed sets, studied by Clausen-Scholze. The reader might choose
to return to them after consulting Subsection 7.2 below, which contains some recollections and
further facts about quasiseparated quotients.
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7.5 Remark. The proof of Corollary 7.4 can be adapted to show more generally that whenever
C ~ S is infinite, the condensed group th‘md(A1 \ S,7) is not profinite and therefore also not
qua51separated by Theorem 7.17. Indeed if it was, it would follow from Proposmon 7.2 that
Ng C Frc is a closed subgroup. Thus, the image of Ng under the map Frc - H Z would also
beclosed in [] .o Z. But this i image is exactly @ g Z, which is not closed if C \ S is infinite.
Even more generally, the above arguments show that the condensed fundamental group of any
Dedekind scheme X is not quasiseparated whenever the abstract normal closure N C Galg(x)
of the subgroup generated by all decomposition groups D is not closed.

The next example shows that whenever S # @, even if C \ S is finite, the condensed funda-
mental group on Aé \ S is not quasiseparated in the sense of Recollection 7.7. For example, this
covers the case of the localization Spec(C[T]r_q)) for a € C.

7.6 Example. LetG = ﬁr{a,b} be the free profinite group on two elements a, b, and let
= @ ~7ZcG

be the (necessarily free) profinite subgroup of G generated by b.

We claim that H™ ¢ H'™. Indeed, let g, = [] _, (a'b"a™"). For each n, g, € H". Moreover,
the g,,’s form a Cauchy net (sequence) in G and thus converge to some g € G, as G is Raikov-
complete: Indeed, for a given ny and n > ny, we have g, ' g, = Hl "o L, (@'bta™™). LetN < G

be a normal open subgroup. Then there exists n, such that for any m > ny, there is a™,b™ € N.
This is because a and b are images of generators of Z via (two different) continuous maps Z — G
and the corresponding fact holds already in Z. It now follows that 8, g, (and, by normality, also
8n8n, D lie in N for any n > ny. It follows that g € H'™, We want to show that g ¢ H"°. Assume

the contrary. Then there exist somer € Nand ¢; € G,d; € H such that g = Hi:l cidici‘l.

Now, consider the following system of finite quotients of G: Q,, = P,, X Z/m!, where P,, =
(Z/m!)™ is the m!-fold product of Z/m!’s, with an action by Z/m! that permutes the factors.
The map G - Q,, is defined by b ~ (1,0,0,..) € P,, = (Z/m!)™ and a ~ 1 € Z/m!. Note
that g lands in P, via this map. Now, for m > r, we get that, on the one hand, the image of
gin P,, = (Z/m!)™ has an increasing (With m) number of nonzero entries and, on the other
hand, the presentation g = Hl _oGidic; U implies that this number is bounded by r. This is a
contradiction.

Now let S C C be a non-empty subset. We have a diagram of short exact sequences

1 Ny Fre —— nMALS, () — 1
1 Hoe /F\r{a,b} _— /F\r{a,b} /an —1

where the middle vertical map sends z € Cto b if z € S and to a otherwise. Then, by construction,
H"® is the image of Ng under this map. Thus, if 7'c§°“‘11(A1 \ S, 77) was quasiseparated, Ng would
be a closed subgroup, see Proposition 7.11 below, and so would H"¢, contradicting the above.

7.2 Preliminaries on quasiseparated quotients

7.7 Recollection. A condensed set A is quasiseparated if for any two maps B — A and B’ — A
in which B and B’ are quasicompact, the pullback B x4 B is quasicompact as well. We denote by
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Cond(Set)® c Cond(Set) the full subcategory that is spanned by the quasiseparated condensed
sets.

7.8 Lemma [69, Lemma 4.14]. The inclusion Cond(Set)¥ C Cond(Set) admits a left adjoint
(—)% that preserves finite products.

Explicitly, if A is a condensed set, its quasiseparated quotient A% can be computed by choosing
acoverU = ]_[l. S; » A by profinite sets and by defining A% as the quotient of U by the closure of
the equivalence relation U x4, U C U X U.

Since (—)% preserves finite products, it induces a functor Cond(Grp) — Cond(Grp)% which
is left adjoint to the inclusion.

7.9 Notation. Given a scheme X and geometric point X — X, we write

thlzond,QS(X, %) = TCiond(X, x)ds

for the quasiseparated quotient of the condensed fundamental group of X.
Our next goal is to derive a more explicit description of G%.

7.10 Definition. An inclusion C C A of condensed sets is closed if for every profinite set S and
map S — A, the pullback C x4 S C S is a closed subspace.

7.11 Proposition. For every condensed group G, its quasiseparated quotient G% can be computed
by G /{e}, where {e} C G is given by the intersection of all closed normal subgroups of G.

For the proof, we need two auxiliary results.

7.12 Lemma. Let A be a condensed set and let R C A X A be a closed equivalence relation. Then
the quotient A/R is quasiseparated.

Proof. First, let us choose a cover U = []._, S; » A by profinite sets S;. Set

iel

Ri:=R x (UxU)
AXA

and note that R; defines a closed equivalence relation on U with the property that A/R = U/R;.
Let A be the filtered poset of finite subsets of I, and for each J € A, let U; = HJ.E ;S Then we

can write U as the filtered union of the U;, and for each J C J’ the inclusion U; C Uy is a closed
immersion of compact Hausdorff spaces. Let us moreover set

Ry=R; x (UyxU.
J IUXU( J J)

for each J € A. Then each R; defines a closed equivalence relation on Uy, and, since A is filtered,
we have R = colimj.5 R;. As a consequence, we may identify A/R = colim;., U;/R;. Now since
each R; is a closed equivalence relation on Uy, the condensed set U;/R; is a compact Hausdorff
space. Moreover, for every inclusion Uy C Uy, the induced map U;/R; — Uy /Ry is injective by
construction of Ry and Ry, and is therefore automatically a closed immersion. Hence the desired
result follows from [69, Proposition 1.2 (4)]. O

7.13 Lemma. Let ¢ : G — H be a homomorphism of condensed groups. If H is quasiseparated,
then ker(o) is a closed subgroup of G.
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Proof. Since ker(p) is the inverse image of {e} C H, it suffices to show that {e} is closed in
H. For this, pick any map from a profinite set S — H. Since S and {e} are quasicompact and
H is quasiseparated, the fiber product S Xy {e} C S is quasicompact. Since a subobject of a
quasiseparated condensed set is quasiseparated, S Xy {e} is also quasiseparated. It follows that
S X {e} is compact, and hence a closed subset of S, as desired. O

Proof of Proposition 7.11. We begin by showing that the quotient G /@ is quasiseparated. To see
this, first note that the map

(7.14) (pry, 1) : G xf{e} - GxG

(where u denotes the multiplication map) is a closed immersion since when composing this map
with the isomorphism G X G — G X G given by (g, h) — (g,g 'h), the resulting map can be
identified with the product of the identity with the inclusion. Observe that the map in (7.14) is
precisely the equivalence relation defining the quotient group G /{e}. Hence the claim follows
from Lemma 7.12.

To complete the proof, we need to show that for every map ¢ : G — H of condensed groups

in which H is quasiseparated, the kernel ker(gp) contains {e}. For this, it suffices to check that
ker(g) is closed. This is Lemma 7.13. O

7.15 Proposition. Let1 — N — G — H — 1 be a short exact sequence of condensed groups. If
H is quasiseparated, the induced sequence 1 — N%¥ — G¥ — H — 1 is again exact.

Proof. We only need to show that N% — G% is injective (we are using here H = H%). Since H is

quasiseparated, Lemma 7.13 shows that N — G is closed. Therefore, EN = EG (as subgroups
of G), and thus

N9 = N/EN —_ G/mG =GB
is injective. 0

7.16 Corollary (fundamental exact sequence on quasiseparated quotients). Let k be a field with
separable closure k, let X be a qcgs k-scheme, and let X — X be a geometric point. If X is geometri-
cally connected and X, has finitely many irreducible components, then the sequence of condensed
groups

1— Tciond’qS(X,g, X)) — niond’qS(X, X) — Gal, — 1

is exact.

Proof. Combine Corollary 5.7 and Remark 5.8 with Proposition 7.15. O

d, . .
7.3 7,"""* of geometrically unibranch schemes
It is a common theme in arithmetic geometry that various generalizations of n?t are all equal
(and profinite) for normal (more generally: geometrically unibranch) schemes. See [7, Theorem

11.1] and [10, Lemma 7.4.10] for instances of this phenomenon. As we saw before, this fails for
ﬂ:iond and X = Alc. However, the expected behavior still holds for 7'ci°nd’qS

the main goal of this subsection.

. Proving this fact is
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7.17 Theorem. Let X be a qcgs, geometrically unibranch scheme with finitely many irreducible
components, and let X be a geometric point of X. Then the natural homomorphism ni"nd(X ,X) —

Tt‘l’t(X , %) induces an isomorphism

B, 1) = X, %)

In particular, niond’qs(X ,X) is a profinite group.
For the proof, we need the following observation.

7.18 Proposition. Let X be a qcgs scheme with a geometric point X and such that ngond(X ) is
discrete. Then the canonical comparison homomorphism

(X, x) - n$'(X, %)

cond

o is satisfied

witnesses Tc‘it(X , X) as the profinite completion of niond(X ,X). The condition on
(for example) when X has locally finitely many irreducible components.

Proof. Combine Lemma 2.12, Lemma 3.14, and Corollary 4.19. O

To prove the main result, we first want to show that this quasiseparated quotient is a compact
topological group. For this, we make use of the following simple consequence of the fact that
the fundamental group of a simplicial set coincides with the fundamental group of its geometric
realization:

7.19 Lemma. Let f: T. — S. be a map of simplicial sets that is bijective on vertices and surjective
on edges. Then, for any choice of basepoint t € T, the induced homomorphism

fs: m(T.,t) = m(S., f(1))
is surjective. 0

7.20 Lemma. Let Y — X be a morphism of qcqs schemes. Assume that there exist proétale hyper-
covers X! — X and Y. — Y by w-strictly local schemes and a morphism Y — X! that fit into a
commutative diagram

Y — X!

[

Y — X
such that:

(1) Theinduced map of profinite sets nO(Y(’)) — (X (’)) is a bijection (and thus, a homeomorphism).

(2) The induced map of profinite sets nO(Y{) - nO(X{) is a surjection (and thus, a topological
quotient map).

Then, for any choice of geometric points y — X, the induced homomorphism
deyv 5 dey 5
mod(Y, §) - mSX, 2)

is a surjection of condensed groups.
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Proof. By Recollection 2.7 and Propositions 3.16 and 3.40, the fundamental group niond(X ,X)
can be computed as

Extr® s S — 7'c1< [cr:n%leiArg) MapTop(S,TcO(X;n)), )E) )

In other words, for each S, we have to compute the fundamental group of the simplicial set
Map,, (S, mo(X ') given by [m] — Mapy,, (S, 79(X},)). Analogous statements hold for Y. and
Y.

Now, the assumptions on the maps T[O(Y(’)) - nO(X(’)) and nO(Y{) - nO(X{) imply that, for
each S e Extr, the induced map

Map g, (S, o(Y.)) = Mapr, (S, (X))
of simplicial sets satisfies the assumptions of Lemma 7.19. It follows that, for each S, the map
(Y, §)(S) — mOMX, %)(S)
is a surjection, as desired. O

7.21 Lemma. Let X be a quasiseparated, geometrically unibranch, irreducible scheme and let
1 € X be its generic point. Let X, be any proétale hypercover by w-contractible qcqs schemes of X.
Then there exists a proétale hypercover Y, of 1) satisfying the conditions of Lemma 7.20 (with respect
to X, and the map n — X).

Proof. Let X, , be the basechange of X, to 7 and note that the map my(X.,) — mo(X.) is a
levelwise homeomorphism by geometrical unibranchness and the fact that each connected
component of a w-contractible proétale X’ over X is the strict localization at some geometric
point of X (see e.g. [51, Lemma 3.15]). In particular, the profinite sets 7t,(X; ,,) are still extremally
disconnected. Being w-strictly local, however, will usually be lost after base-changing to n. We
want to define a w-strictly local hypercover W, of 7 with a map to X. ,, that still has the desired
properties on 7, in low degrees.

To do that, fix a geometric point 7 lying over 7 and write X, ; := X, X, 77. The projection
induces a surjective map of profinite sets 7y(Xo ;) — 7y(Xy,). As the target is extremally dis-
connected, this map admits a section. Let T C my(X, ;) be the image of one such section. By
[10, Lemma 2.2.8], there exists a pro-(Zariski localization) W, — X, that realizes the map
T C my(Xo,3) on connected components. Such W, will in particular be weakly étale over 7, so
w-strictly local by Example 2.40, and, by construction, the map 7,(Wy) — my(X, ) induced by
Wy = Xo5 = X, is a homeomorphism. We can extend this to a map of hypercovers

Y. := cosky(W x X.,—-X.
o(Wo) cosko(X. ) 7 7

that induces a bijection on 0-simplices. The map on 1-simplices is explicitly given by

WoxyWo) X X=Xy
10y Xy ”

and is therefore surjective since W, — X, is surjective. Furthermore, all terms of Y, are w-
strictly local since they are all weakly étale over 77 Example 2.40. This completes the proof. [
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7.22 Corollary. Let X be a quasiseparated, geometrically unibranch, irreducible scheme with
generic point 1) € X. Choose a geometric point 1] lying over 1. Then the canonical map

GalK(ﬂ) = n({ond(spec(K(n))! 77) > ncl:ond(X’ 77)
is a surjection of condensed groups.
Proof. Combine Lemmas 7.20 and 7.21 and Example 3.38. O

7.23 Lemma. Let G’ » G be a surjection of condensed groups. Assume that G' is a profinite group.
Then the quasiseparated quotient G% is a profinite group.

Proof. The quotient G* is qcgs (it is qc as a quotient of something qc). By [17, Proposition 2.8],
its underlying condensed set is a compact topological space. It follows (as the embedding of
compact(ly generated) spaces into condensed sets is fully faithful and commutes with products)
that G% is a (Hausdorff) compact group admitting a surjection from a profinite group G’. Hence
G% is itself profinite. O

Finally, we are ready to prove the main result of this subsection.

Proof of Theorem 7.17. Note that, since Pro(Grpg ) C Cond(Grp)?® C Cond(Grp), the profinite
completion G” of a condensed group G factors over the quasiseparated quotient G% of G. Our

assumptions guarantee that every connected component is irreducible. By the preceding prepara-
cond,gs

1 (X, x) is already profinite,
hence agrees with the profinite completion n‘iond(X , X)\. By Proposition 7.18, this latter profinite

tory results Corollary 7.22 and Lemma 7.23, we thus have that n

completion recovers TC?(X , X). This completes the proof. O

7.24 Remark. It seems like a natural idea to try to extend the notion of quasiseparatedness and
quasiseparated quotients to all condensed anima, and also extend Theorem 7.17 from fundamen-
tal groups to homotopy types. However, a sufficiently nicely behaved quasiseparated quotient
of condensed anima can not exist. More precisely, there is no full subcategory € € Cond(Ani)
with the following properties:

(1) The inclusion € ¢ Cond(Ani) admits a left adjoint (—)%.
(2) A condensed set is in € if and only if its is quasiseparated.

(3) For any quasiseparated condensed group G, the condensed anima BG is contained in €.

Indeed, both BZ and BZ would be contained in €. Since Z/Z is the fiber of the canonical map
BZ — BZ, the condensed set Z/Z would also be contained in C. But Z/Z is not quasiseparated.

cond,gs

7.4 The van Kampen and Kiinneth formulas for 7,

Let us first define a free (nonabelian!) condensed group on a compact space T (or, more generally,
condensed set M). The forgetful functor:: Cond(Grp) — Cond(Set) has a left adjoint

Frfﬂ’)‘d : Cond(Set) — Cond(Grp).
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The condensed group Frlc\f;nd is given more explicitly as the sheafification of the functor

Fry, : Pro(Setg,)°® — Grp

S FrM(S) .

The free group on M comes with a canonical map M — Frjcwoml in Cond(Set). For a profinite set

T, we want to compare it with Fr? P ie., the free topological group on T (see [5, Chapter 7]).
Note that, by the universal property of Fr%ond, there is a canonical homomorphism

cond top
Frp™ — Fr,

in Cond(Grp).

7.25 Recollection (on free topological groups and products). In this recollection, T will always
denote a topological space and G; will denote topogical groups.

(1) (Markov, c.f. [5, Theorems 7.1.2 & 7.1.5]) The free topological group Fr'°? on T exists for
T

every Tychonoff (=completely regular) space T, and the unity : T — FrtTOp is a topological
embedding. In addition, the image #(T) is a free algebraic basis for G.

(2) (Graev, Mack, Morris, Ordman, c.f. [5, Theorem 7.4.1]) When T is compact (more generally:
k), then Fr;?p is the topological colimit of subspaces

(Frp)<, = B,(T) = {words of reduced length < n}.

(3) By [31], the underlying set of *;Op G; is the abstract free product and if the groups are Haus-
dorff, their free product is Hausdorff too.

Moreover (c.f. [52, Remark 4.27]), when the G;’s are either compact or finitely generated
discrete (say Z*"), by looking at the surjection from a suitable free product (see Lemma 7.30
below) and using (1), it follows that *EOP G; is a topological colimit of compact subsets of
“bounded words”, where by “bounded words” we in particular mean that all “letters” from
one of the Z’s sit inside of some (larger and larger) interval [—n, n].

7.26 Recollection. In the context of (abstract) free groups on a set M (resp., free products of
groups Gy, ..., G,,) we say that gf,lll gf,’l'n (resp., g1 --- 8n), Where g, is the generator correspond-
ing to m; € M (resp., where g; is a nontrivial element of one of the groups Gj, say G(;)) is a
reduced word if for 1 < i < n, there is m; # m; 1 (resp., j(i) # j(i + 1)).

The following result is a nonabelian analogue of [69, Proposition 2.1]. The proof essentially
follows the one of loc. cit.

7.27 Proposition. Let T be a compact Hausdorff topological space. Then the natural map

(7.28) Fr§™™ — FryP

is an isomorphism.

In the proof, we use the following convention: For a profinite set S and ¢t € T(S), we denote

by g, € Fri™™ the element given by the composition

t
S—>T— Fr%ond s

cond

where T — Fry  is the unit map.
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Proof. First, we want to check that the map (7.28) is injective. Note that this boils down to
checking that any section of Fr>'° that maps to 1 € Fr;'”, trivializes after passing to a cover in
Pro(Setg,).

Observe that this is the case for the underlying groups. Indeed, it is enough to check that the
map Frrg,) — Fr;? P(x) is injective.® This follows directly from Recollection 7.25 (1).

We now treat the injectivity for a general S e Pro(Setg,,). Assume that 1 # g € Frp(g) maps

tole Fr;?p(S). By the previous point, for any s € S, the restriction g(s) € Fry(, is trivial. Write g
as a reduced word g = g;l gg g::n", where now ¢; € T(S). All g, are nonzero and, if m > 1, we
have g, #g,, forl<i<m-1

If m = 1, then we plugin any s € S to see that 1 = g(s) = g;l(s). But the right hand side
cannot be trivial being a generator in the free group raised to a nonzero power - a contradiction.

Assume now that m > 1. Let S; denote the closed subset of S where ¢; = ¢;,,. First, note that
the S;’s (where 1 < j < m) jointly cover S. Indeed, if that would not be the case, then any point
s in the complement would have the property that 1 = g(s) = gfll(s)g:j(s) gtr'”(s) is a nontrivial
reduced word - a contradiction. "

Thus, passing to a finite closed cover of S, we can assume that ¢; = ¢, for some j, effectively
reducing the length of the shortest word that g can be written as. By induction, this implies that
g has to be trivial — a contradiction.

As the proof of injectivity is finished, we now move on to surjectivity. Consider the map of
compact topological spaces

T" x {-1,0,1}" — (FryP)<,

given by (t1, ..., by, €15 e » €1) — gfll - gf: This map is clearly surjective. It fits into a commutative
square

t
T" % {-1,0,1}" (Fry)en
d t t
Fry™ — Um(Fr;p)Sm = Frj?p.

Evaluating at any S € Extr, and using [10, Lemma 4.3.7], this shows the surjectivity of the lower
horizontal map (by varying n). O
7.29 Remark. Assume that S = lim; S; is a profinite set with S; finite. Essentially, the same proof
cond

strategy (but without having to use the results of Recollection 7.25 (1)) shows further that Frg
and FrtsOp are isomorphic to the group Um lim; ((Frsi )<m)- This is analogous to the presentation

in [69, Proposition 2.1].
Similarly as before, one can introduce the free condensed product #°°™ of condensed groups.
It is the coproduct in the category of condensed groups. It can be explicitly described as the

sheafification of the presheaf +; G; given by

Pro(Setg,)°P — Grp
S I—)*i Gl(S) .

®We are using here that evaluating Fr;‘}nd on = as a sheaf is the same as evaluating its defining presheaf.
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Free products of topological groups *'°P exist as well and for G; € Grp(Top) there is a canon-
ical homomorphism *fond G; — *EOP G;.

First, let use prove an auxiliary lemma.

7.30 Lemma. Let Gy, ...,G,, be compact Hausdorff topological groups and r € N. Denote by
T = Gy U--- UGy, U{l,..,r} the topological space that is the disjoint union of the G;’s and r
singletons. Then the canonical homomorphism

d
Fr%ond -G goond ., cond G, geond Z+°r

is surjective. An analogous fact holds for topological free products.

Proof. The universal properties of these groups give a homomorphism as above (here, we are
mapping each of the r points in T to 1 € Z via one of the r canonical maps Z — Z*Cond’). This
map already exists on the level of the defining presheaves and is surjective there, so the map of
sheaves is surjective as well.

We omit the details for the topological counterpart (it uses Recollection 7.25). O

7.31 Proposition. Let Gy, ..., G, be compact Hausdorff topological groups and r € N. Then the
natural map

cond,.

G, weond . cond Gy woond 7+ -G, «00P ... 4tOp Gy, 0P Z*mpr

is an isomorphism in Cond(Grp).

Proof. To see the surjectivity, one can either redo the argument in the proof of Proposition 7.27 or
use its statement together with Lemma 7.30 and the diagram (with T = Gy U...UG,,Ll % Ll... Ll %)

Freond seond G,

| |

t t
Frj?p — *iOP G;

Now, for the injectivity, the argument is very similar to the proof of Proposition 7.27. We can
work with " G;. The homomorphism of underlying groups

*i Gl(*) - ( *?)p Gl)(*)

is a bijection (see Recollection 7.25).

Now, fix S € Pro(Setg,) and let g = g8, --- g, €*; G;(S) be mappingto1 e ( *;Op G;)(S).
Here, each g; is in some Gg(;y(S) and we can assume this presentation of g is a reduced word
(we assume m > 1 as the case when m = 1 is again easy). We know that g(s) ex; G;(x) is trivial
foranys e S.

Let S; denote the closed subsets of S where gj vanishes. First, note that the S j’s (where
1 < j < n)jointly cover S. Indeed, if that’s not the case, then any point s in the complement would
have the property that g(s) = g;(s)g,(s) --- g,(s) is a nontrivial reduced word - a contradiction.

But now, passing to the this cover, we have again reduced the length of the presentation of g
as a word. We are done by induction. O
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7.32 Lemma. Let T be a compactly generated topological space. Sending a closed subspace Z C T
to Z — T induces an order-preserving bijection between closed subspaces of T and closed condensed
subsets of T. The inverse is given by sending a closed condensed subset Z C T to Z(x) CT(x) =T
equipped with the subspace topology.

Proof. In order to avoid confusion during the proof, we will write S for the condensed set repre-
sented by a profinite set S. We at first check that the inverse defined above is well-defined, that
is, that Z(x) is a closed subset of T. We may check this after pulling back along any continuous
map f: S - T for S a profinite set. Then the pullback S Xy Z(x) C S is the subspace given by
those s € S such that f(s) € Z(x). If we alternatively compute the pullback Z xr S in Cond(Set),
then Z X7 S C S is a closed condensed subset by definition. In particular, (Z xT_ S)(x) is a closed
subset of S. But (Z x7 S)(x) = Z(x) Xr S, as subsets of S, and thus Z(x) is closed.

Furthermore, for a closed subspace Z C T, we have Z = Z(x). So, conversely, let us start
with a closed condensed subset Z C T. Then for any S € Pro(Setg,) we claim that the subset
Z(S) € T(S) is given by those f : S — T such thatforall s € S, f(s) € Z(x). Indeed, since Z is a
subobject, f isin Z(S), if and only if the monomorphism j: Z X S — S is an isomorphism. But
since j is a closed immersion, it follows that j is an isomorphis;n if and only if j(x) is. But this
is the case if and only f(s) € Z(x) for all 5 € S, as claimed. Since the same description applies
to the condensed subset represented by the subspace Z() equipped with the closed subspace
structure, the claim follows. O

7.33 Corollary. Let G be a topological group and H <t G a normal condensed subgroup. Assume
that G is represented by a compactly generated topological group G. Let Hy = im(H - G —
G%® = G,). Then the canonical homomorphism

(G/H)® = Gy [Hy(x) in Cond(Grp)

is an isomorphism, where Hy () denotes the topological closure in G.

Proof. Comparing universal properties, we see that the canonical map (G/H)* — (G%/H,)%
is an isomorphism. By Proposition 7.11, it follows further that (G%/H)%® — G% /H,. Now since
G% = Gy, Lemma 7.32 shows that H, = H,(x), completing the proof. O

We now fix some notation for the van Kampen formula.
7.34 Notation. Let X be a scheme.

(1) Assume X is connected and has finitely many irreducible components. Write v : X* —» X
for the normalization and write

X% = XV Xy XV and XV :=XY xx XV Xx XV

Assume that X%” and X>” also have finitely many irreducible components (e.g., when X is
Nagata). Decompose X” = ]_[i X? into connected components. Write I' for the “dual” graph

with vertices V' = m,(X”) and edges E = 7,(X?”), and fix a maximal tree T.
(2) We write Hiond(X ) = rslnggnd(x ) (resp. ﬁ?(X ) = ‘cglﬁiﬁ,(X )) for the condensed (resp.

profinite étale) fundamental groupoid of X. Here, T, denotes 1-truncation of condensed
(resp. profinite) anima.
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7.35 Theorem (van Kampen formula for the quasiseparated fundamental group). In the notation
of Notation 7.34, after making choices of geometric base points and étale paths (as in [73, Corollary
5.3]), one has a canonical isomorphism

d, - t 6 -
T[;(Jn qS(X’ X) ~ ( *i0p T[?t(Xz/,xi) % top TCI(F, T))/thc ,

where H is the subgroup generated by the following relations:
(1) Foralle € E and g € {'(e, %(e)) we have n'(8;)(g)¢ = énc'(3,)(g).

(2) Forall f e y(X3), we have

—_— — —\—1
@2y (eisg) ™ Gofdeziale) ™ (@1) (o)™ = 1.

Here, each ocgjflz lives in some n'(X?, %)) and €, (6, f) e my (T, T).

Proof. Combining Corollary 6.16, left adjointness of 1-truncation and [41, Proposition A.1], we
get an equivalence of condensed groupoids.

colim IT°M(X*¥) = Tr¢ond(x),

op 1
[k]EA<2

The fixed geometric points and étale paths fix points and paths in Hi"nd(X (), Hiond(X;’)(*),

and so in any Hiond(X )(S), Hiond(X U)(S), ... for S e Extr. By Corollary 4.19, these groupoids are
connected. We now want to pass from a statement about fundamental groupoids to a statement
involving fundamental groups. For a fixed S € Extr, we can apply the usual “discrete” van
Kampen formula: see [52, Theorem 3.7] for a version for 2-complexes of Noohi (and so also
discrete) groups or [11, Chapter IV, §5], cf. also [73]. It implies that

7.c<1:ond(X, %) ( *;:ond 7.[<1:ond(X;/, %) scond 7, (T, T))/HI

where H' is the normal condensed subgroup that for each S is generated by relations analogous
relations as in the statement, but where g € niond(e, x(e))(S), etc.

Now, passing to quasiseparated quotients and using niOnd(X;’,)‘ci)qs = n‘it(X;’,J‘ci) (this is
Theorem 7.17) together with Proposition 7.31 and Corollary 7.33 yields the result.

We have used the following observation to get g € n'it(e, X(e))asopposedtog € niond’qs(e, x(e))
orge niond(e, %(e)) in relation (1): although X?” might not be normal, so niond’qs(e, X(e)) might
differ from n?t(e, X(e)), the maps niond’qs(al), niond’qs(ao) have profinite groups as the targets
and thus, factorize through the profinite completion of niond’qs(e, X%(e)), which is TE?(@, x(e)) (cf.
Proposition 7.18). As the topological normal closure of the image of niond’qs(e, x(e))(*) inside

Tt?t(e, X(e) is the whole group (one uses the universal property of the profinite completion to
check this), the set of relations

@)@ Bo)(@) e e € B, g e m(e, X(e))}

is still in H'™® and contains the original set of relations (i.e. a similarly defined one where g €
Ttiond’qs(e, X(e))), as desired. O
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7.36 Example. Let k be a separably closed field.

(1) Let C; and C, be normal curves over k with fixed closed points ¢; € C;. Let C = C L, —¢, C5
be the gluing of these curves along these closed points. Then

d’ A .
ﬂion (.0~ Tfit(cb cp) *'P TC?(Xz, ).
(2) Let C be the nodal curve over k obtained from Pllc by identifying 0 and 1. Then
cond,gs
u C,o)~Z.

For more computations involving the van Kampen formula (but for Noohi groups), see [52].

7.37 Corollary (Kiinneth formula for the quasiseparated fundamental groups). Let k be a sepa-
rably closed field and let X and Y be k-schemes such that X, Y, and X X, Y satisfy the hypotheses of
Notation 7.34. Let Z — X X;. Y be a geometric point lying over geometric pointsx — X andy — Y.
IfY is proper or char(k) = 0, then the natural homomorphism of condensed groups

T[iond’qs(X X, Y,Z) = Tc(l:ond,qs(X’ %) % Tciond,QS(Y’ 7)

is an isomorphism.

. . d,
To prove this result, one can combine the van Kampen formula for nion a8

Kiinneth formula for T[?t as in the proof of [52, Proposition 3.29], but this would require one
to argue using the explicit relations appearing in the van Kampen theorem. To avoid it, it is
beneficial to first apply the classical van Kampen in the groupoid form and only compute the
m,’s at the very end. This is how we structure the proof below.

and the classical

Proof. Fix integral hypercovers v ., vy . by normal schemes of X and Y. Their product is again
an integral hypercover of X X, Y by normal schemes. Apply I (—) to these diagrams and pass
to colimits in Cond(Ani). The fixed geometric point Z points them. Then 1-truncate and apply

niond’qs(—) to both sides. We get a homomorphism of condensed groups

o N o
nl([%lelAlg, ' (X X V), %)% — nl([gno]lelAn,}p I (Xp) X T (Y ), )%

Using [41, Proposition A.1], we can replace colimy,,;jcaor by colim[m]e acr - Apply the usual Kiin-
<2

neth formula for n‘it (c.f. [SGA 1, Exposé X, Corollaire 1.7 & Exposé XII, Proposition 4.6] or [35,
§4]), which implies that ﬁft(X mXY,)= ﬁf‘(Xm) X ﬁ?t(Ym), to get an isomorphism

. e ~ . e e
711( cohr(r)%] T Xy X V), %)% = 1ry( cohr&) (X ), %)% X 11( cohrg%] (Y ), %)%

[m]sA<2 < <
. . d, : L
Now, using the equality 7;""* = n%" on normal schemes and arguing via the van Kampen

formula as in Theorem 7.35 to replace the fundamental groupoids by groups, we get that, e.g.,

711 ( colim ﬁf‘(Xm), %) = niond’qS(X , %)

m]eA62
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and similarly for Y and X x Y. Note that X%, X3” (and similarly for Y*-) might not be normal, but

in the van Kampen formula all maps from niond’qs of (connected components) of those schemes

will always factor though a profinite group (by normality of X, Y” and X” X Y"), so we were
allowed to replace H?nd by II3" even for those non-normal schemes in the above computation
(cf. similar argument appears in the proof of Theorem 7.35). This completes the proof. O

7.38 Corollary. Let K D k be an extension of separably closed fields, and let X be a k-scheme
satisfying the hypotheses of Notation 7.34. If char(k) = 0 or X is proper, then the projection Xg — X
induces an isomorphism

cond,gs o cond,gs
B Xg) = 7).

In the parlance of [49], the property of schemes established in Corollary 7.38 could be called

«_cond,gs s
o -properness”.

7.39 Remark. In the context of anabelian geometry, it is sometimes beneficial to have a version
of the Kurosh subgroup theorem available in the category of groups where our fundamental
groups live, or at least its corollary: the characterization of maximal finite/compact/...subgroups
of a free product as a "vertex subgroup” (i.e., one of the free summands up to conjugation). See,
e.g., [61]. Proving such a result for the proétale fundamental group seems rather tricky due to

the presence of Noohi completions. For 7<*"%%

1 , however, this can be done: see Proposition 7.40.

7.40 Proposition. Let X be a scheme and X a geometric point such that

MK, %) = #P Gy xloP 2T

where the G; are profiniteandr € N. Let H be a compact topological groupand ¢ : H — niond’qs(X , %)

a continuous homomorphism. Then im(p) C gG;g~! for someiand g e niond’qS(X , X).
Proof. This follows follows from [63, Theorem 1]. O

7.41 Remark. We expect the assumptions of Proposition 7.40 to be satisfied, e.g., when X is a
(semistable) curve over a separably closed field k, with G; = T[;:t(Xl? ,X%;), where X = uin?’ is the
the normalization of X.

s roet P . . .
For Ttit (or even ¥"°%), this is a classical computation using the van Kampen theorem when

1
X is semistable (c.f. [73, Example 5.5] in the case of n‘it or [54, Theorem 1.17] for nlfmet) but
with some care can be done for arbitrary curves, see [53, Theorem 2.27]. A similar computation

(using Theorem 7.35) should extend this to niond’qs.

8 The Noohi completion of the condensed fundamental group

The goal of this section is to recover the proétale fundamental group thrOét(X ,X%) of [10, §7] of

a topologically noetherian scheme X from the condensed fundamental group Tciond(X ,X). The
main input needed for this is the observation that all weakly locally constant sheaves in the sense
of [10, Definition 7.3.1] can be recovered from niond(X , X). We prove a stronger derived version
of that result in §8.1. In §8.2, we explain how to Noohi complete condensed groups and show

that the Noohi completion of niond(X ,X) is indeed the proétale fundamental group of [10, §7].
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8.1 Recovering weakly locally constant sheaves

In this subsection, we explain how to recover weakly locally constant proétale sheaves on a
scheme X as representations of the condensed homotopy type. The following is a generalization
of [10, Definition 7.3.1] to sheaves of anima:

8.1 Recollection. Recall that for a qcgs scheme X there is a canonical algebraic morphism
Sh(my(X)) — Xg induced by sending a clopen in 7y(X) to its preimage in X. Furthermore

F e X;lryoit is said to be locally weakly constant if there is a proétale cover {U; — X}y by qcqgs
schemes such that each F|y, is in the image of the canonical algebraic morphism

hyp v hyp
Sh(nO(Ui)) Ui,ét Ui,proét :
We denote the full subcategory of X hyp spanned by the locally weakly constant sheaves by

proét

wLoc(X).
8.2 Definition. We define the condensed co-category Ani"!! by the assignment
S — Sh(S)

for every profinite set S. Similarly, we refer to the 0-truncated version of this condensed co-cate-
gory by Sett,

For every profinite set S, there is a canonical fully faithful comparison functor

¢g: Sh(S) & Cond(Ani) /g

which is part of a geometric morphism of co-topoi [32, Sections 3.2]. As the comparison map is
natural in S, see [32, Lemma 3.16], it induces an embedding

Ani"" & Cond(Ani)

of condensed oco-categories.

8.3 Remark. The superscript ‘ult’ comes from the word ultrastructure. Any category with filtered
colimits and infinite products can be canonically upgraded to an ultracategory by equipping it
with the categorical ultrastructure, see [55, Example 1.3.8]. In [55, Construction 4.1.1] Lurie
explains how to regard ultra categories as condensed categories. Furthermore it follows from [55,
Thecl)rem 3.4.4] that the image of Set equipped with the categorical ultrastructure is precisely
SetUlt,

8.4 Recollection. Using [80, Corollary 1.2], we have a fully faithful functor

b* : Fun®*(I1%"(X), Cond(Ani)) — Fun®®(Gal(X), Cond(Ani)) ~ X™F

proét

given by precomposition with the localization b : Gal(X) — BondGal(X) = Hf,gnd(X ) asin the
proof of Proposition 3.36.

8.5 Theorem. Let X be a qcqs scheme. The composite fully faithful functor
(8.6) Fun®®(I19"(X), Ani't) —— Fun®®(I1%"4(X), Cond(Ani)) b, xhvp

proét

has image the full subcategory wLoc(X) of locally weakly constant sheaves.
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The idea of the proof of Theorem 8.5 is to show it first in the case of w-contractible affine
schemes and then conclude by proétale hyperdescent.

8.7 Lemma. Let W be a w-contractible affine scheme. Then the fully faithful functor

Fun(1t,(W), Ani®lt) — WP

proét
has image wLoc(W).

Proof. Recall that since W is w-contractible, Hggnd(W) ~ 1,(W). Moreover, since my(W) is a
profinite set, the Yoneda lemma implies that

Fun®(my(W), Ani"t) ~ Ani"(7,(W)) ~ Sh(my(W))
and the given functor is identified with the pullback functor

Sh(my(W)) & WP

proét

along W — mo(W). Therefore it lands in wLoc(W) by definition and it remains to show surjec-

tivity. Let F € wLoc(W). Then there is a proétale cover p : U — W such that p*F is in the image
of Sh(my(U)) —» Ugfoi .- Since W' is w-contractible, we can pick a section s : W — U and since
the diagram

w —s my(W)

Sl 1“0(5)

U —— mp(U)
commutes, we see that F = s*p*F is in the image of v*. O

Proof of Theorem 8.5. As we have a chain of fully faithful functors (8.6), we regard

Fun®*(I15"(X), Anitt)

as a full subcategory of X P It remains to show that this full subcategory agrees with the full
proét

subcategory wLoc(X). Since the assignment Y — I19%(Y) is a hypercomplete proétale cosheaf,
the assignment
Y — Fun(I1$"(Y), Anit!t)

h;
YYP

.. Furthermore, by definition, the
proét

is in a fact a subsheaf of the proétale hypersheaf Y —

assignment
Y » wLoc(Y)

is subsheaf of the proétale hypersheaf Y — yhe | Therefore, it suffices to see that they agree on
proét

w-contractibles, which is the content of Lemma 8.7. O

8.2 Recovering the proétale fundamental group

To define Noohi completion for condensed groups, we will use the following left adjoint.
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8.8 Recollection. The canonical functor Grp(Top) — Cond(Grp) admits a left adjoint
(=)%P : Cond(Grp) — Grp(Top) .

Note, however, that in general it is not the restriction of the left adjoint "underlying topologi-
cal space” functor
(=)(#)op : Cond(Set) — Top

to condensed groups, as this latter functor does not preserve products.

It turns out that some insight into what (=)(x);,p does can be gained in terms of quasitopo-
logical groups.

8.9 Remark. Recall that a quasitopological group is a topological space G with an abstract group
structure such that:

(1) The inversion operation G — G given by g — g~! is continuous.

(2) Foreachh e G, the translations I, r, : G — G, givenby g — ghand g — hg, are continuous.

The embedding Grp(Top) C qTopGrp of topological groups into quasitopological groups admits
a left adjoint
7 : qTopGrp — Grp(Top)

that moreover preserves the underlying abstract group and only affects the topology, cf. [12,
Lemma 3.2 & Theorem 3.8].

While the functor (—)()op does not provide (after restriction) an adjoint between Cond(Grp)
and Grp(Top), its image still lands in qTopGrp. This is essentially because the condition of
continuity of the inversion and translation maps does not involve forming a product. Thus, after
restriction, we can consider

(=)()iop : Cond(Grp) — qTopGrp
Postcomposing with 7, we get a functor
70(=)(*)op : Cond(Grp) — Grp(Top)
One can then quite directly verify (see [56, Proposition 1.3.16] for details) the following result:

The composition To(—)(*)op s a left adjoint to the "associated condensed group” functor. Visu-
ally
70(=)(*)iop : Cond(Grp) 2 Grp(Top): Q

Let us denote this composed functor by (—)'P. It follows from this discussion that for G e
Cond(Grp), the abstract group G(*) and the underlying group of G'°P match.

8.10 Recollection [10, §7.1]. For a topological group G, let F;: G-Set — Set denote the
forgetful functor from sets with a continuous action by G to abstract sets. We say G is Noohi if
the canonical continuous map

G- Aut(FG)

is a homeomorphism of groups. Here, Aut(F) is topologized using the compact-open topology
on groups Aut(Fg(M)) for M € G-Set.
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This type of a topological group is useful when one wants to generalize Galois theory of
Grothendieck to allow infinite fibers (cf. the “infinite Ga}lois theory” of[10, §7.2]). This formalism
was used to define the proétale fundamental group n?roet of a scheme in §7.4 of loc. cit.. The group

nl;mét is Noohi. Similarly, the fundamental group of de Jong in rigid geometry (see [47]) and its

later generalizations (see [2] and [1]) are all Noohi.
Noohi groups can also be characterized in purely topological terms as Hausdorff, Raikov
complete groups such that open subgroups form a fundamental system of neighborhoods at 1.

The inclusion Grp™*°" ¢ Grp(Top) admits a left adjoint (—)N°°hi, called “Noohi completion”,

given by .
Grp(Top) > G — Aut(Fg) € Grp™°M .

See [52, §2] for this and some other properties of Noohi groups and completions.
We now want to extend Noohi completion to condensed groups.

8.11 Definition. Let G € Cond(Grp). We define

GNoohi _ (Gtop)NOOhi c GrpNoohi

to be the Noohi completion of G.

8.12 Theorem. Let X be a topologically noetherian scheme and X — X a geometric point. Then
there is a natural isomorphism

(T[iond(X, X)top)Noohi ~ T[I;roet(X, %).

8.13 Remark. For a condensed group G, one can also define a version of Noohi completion
GNoohi ¢ Cond(Grp) directly as a condensed group without passing through (—)°P, More pre-
cisely one can define GN°°Miby the assignment

1’\*
S — Aut (FunCtS(BG, Set'!t) — Set —> Sh(S)) .

It turns out that the two definitions match, that is, one can check

GNoohi ~ (Gtop)Noohi .

‘We will not need this observation in this article.
The main input that we need is the following:

8.14 Lemma. Let G be a condensed group with condensed classifying anima BG. There is a natural
equivalence of categories

Fun®®(BG, Set'!t) — G'°P-Set
that is compatible with the forgetful functors to Set.

cts

Proof. We first prove the following: the category Fun“(BG, Set"!!) is equivalent to the category
of pairs (M, a) where M € Set and a: G — Aut(M)'P is a map of condensed groups. Here,

the topological group Aut(M)™P is the group of automorphisms Aut(M) topologized via the
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compact-open topology. A map (M,a) — (N, ) is given by amap f: M — N such that the
square

G —% 5 Aut(M)t°pP

| I

Aut(N)“’p T) HomTop (M, N)tOP

commutes (here Hom,,(M, N )P js again topologized via the compact-open topology). If this
description holds, the claim follows: by adjunction, a homomorphism G — Aut(M)'°P can be
uniquely identified with a homomorphism G — Aut(M)'P of topological groups and similarly
for N. Despite the fact that Homyep(M, N )P is not a group, Remark 8.9 shows that the diagram

G'op o Aut(M)'©P

5‘@1 lf*

Aut(N)P — Hompop(M, N)'P

nevertheless commutes. This shows the desired equivalence with the category of G*°P-Set.
The fully faithful functor Fun®*(BG, Set"!t) & Fun®*(BG, Cond(Set)) fits into a cartesian
square

Fun“®(BG, Sett!t)y —=* , Set

[ [

Fun®®(BG, Cond(Set)) —— Cond(Set),

where the horizontal arrows are given by pullback along * — BG. Indeed, this follows as the
functors
Fun®®(—, Set"!"), Fun“®(—, Cond(Set)) : Cond(Ani)°® — Cat

are sheaves and % — BG is a cover in Cond(Ani). Furthermore, applying Fun®(—, Cond(Set))
to the Chech-nerve of x — BG, we get an equivalence

Fun®®(BG, Cond(Set)) ~ lim (Cond(Set) = Cond(Set),; = Cond(Set) /G)

using that by [80, Corollary 3.20]), for a condensed set A, there is a natural equivalence of
categories
Fun®®(A, Cond(Set)) ~ Cond(Set) /A-

cts

Explicitly unwinding the descent datum, we see that Fun™"(BG, Cond(Set)) is equivalent to the
usual category of condensed sets with an action by the condensed group G. In other words, its
objects are condensed sets A together with a map G — Aut(A) of condensed groups and the
maps are defined as above. Here Aut(A) is the maximal condensed subgroup of the condensed
monoid Hom(A, A) given by the internal hom in Cond(Set). Thus, the proof will be complete if
for a set M, we can show that there is a canonical isomorphism

Aut(M, M) = Aut(M, M) .
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But for this, we observe that we have a canonical isomorphism Hom(M, M) = Hom,,(M, M)
under which the corresponding condensed subgroups of automorphisms agree. This completes
the proof. O

Proof of Theorem 8.12. We may assume that X, and therefore I1$0"4(X), is connected by Corol-
lary 4.19 as X has finitely many irreducible components. It follows from Theorem 8.5 that we
have a chain of natural equivalences
Fun“*(Br(X, x), Set"!t) ~ Fun®*(I1¢°"(X), Set"!t)
~ Fun“®(I190"(X), Set!!t)
~ wLoc(X) <o
~ (X, %)-Set
that is compatible with the forgetful functors to Set. Here, the last equivalence is due to the

definition of TtIEIOét(X ,X)in [10, Definition 7.4.2] coupled with Lemmas 7.3.9 and 7.4.1 in loc. cit..

Thus, Lemma 8.14 shows that there is a natural equivalence
oM (X, 3)°P-Set ~ "' (X, X)-Set .

In particular, both groups have the same Noohi completion. Since nfmét(X , %) is Noohi complete

by [10, Theorem 7.2.5], the claim follows. O
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A Rings of continuous functions & Cech-Stone compactifi-
cation

by Bogdan Zavyalov

The main goal of this appendix is to give a self-contained account for the identification of the
Cech-Stone compactification of a topological space X with the maximal spectrum of the ring of
continuous functions on X.

This identification has already been established in [18] using the notion of pm-ring. In this
appendix, we follow the ideas already present in [18]. We do not claim originality of any results
in this appendix. Instead, we hope that this appendix gives a self-contained and reader-friendly
exposition of some ideas from [18] and [27].

Throughout this appendix, we denote by R (resp. C) the topological ring of real numbers
(resp. complex numbers) with the Euclidean topology. For a topological space X, we denote by
C(X,R) (resp. C(X, C)) the ring of real-valued (resp. complex-valued) continuous functions on
X.

Many of the results in this appendix also appear in [78; 79; 77].

A.1 Main constructions

The main goal of this subsection is to introduce some constructions that will be used in the rest
of this appendix. We also study their basic properties.

A.1 Construction. Let X be a topological space.

(1) For each point x € X, we define the evaluation functional ev,, : C(X,R) — R by the formula
evy(f) = f(x).

(2) We define the map
tx : X = Spec(C(X,R))

to be the unique map that sends each point x € X to ker(ev,.).
A.2 Remark. The map tx is clearly functorial in X.

For our later convenience, we record some basic properties of ty.
A3 Lemma. Let X be a topological space.

(1) The natural map 1y : X — Spec(C(X,R)) is continuous;
(2) the image of 1x(X) C Spec(C(X, R)) is a dense subset;
(3) the map ix factors through MSpec(C(X,R)).

Proof. In order to see the first claim, it suffices to show that ¢! (D()) is an open subset of X for
every f e C(X, R). This follows immediately from the formula ;i (D(f)) = {x € X | f(x) # 0}
and the assumption that f is continuous.

Now we prove the second claim. Let Z := V(I) C Spec(C(X, R)) be a closed subset containing
tx(X). Then the construction of ¢y implies that, for every f € I, we have 0 = ev,(f) = f(x) for
all x € X. Thus f = 0 and so we conclude that Z = V(0) = Spec(C(X, R)).
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To justify the last claim, it is enough to prove that ker(ev, ) is a maximal ideal for every x € X.
For this, it suffices to show that ev, is surjective. Fix a constant ¢ € R and denote by c the
corresponding constant function on X. Then the surjectivity of ev, follows immediately from
the observation that ev,(c) = c. O

A.4 Remark. In what follows, we slightly abuse the notation and also denote by tx the natural
morphism ¢y : X — MSpec(C(X,R)).

We will show later in this appendix that ¢y is a homeomorphism when X is a compact Haus-
dorff topological space.

A.5 Warning. The map ty is neither injective nor surjective for a general topological space X.

A.2 pm-rings

In this subsection, we introduce the notion of pm-rings following [18]. Then we show that the
natural inclusion MSpec(A) < Spec(A) admits a continuous retract for a pm-ring A. As a
consequence, we deduce that MSpec(A) is a compact Hausdorff space for any pm-ring A. We
will use the results of this section to relate the Cech-Stone compactification of an arbitrary
topological space X to the maximal spectrum of the ring of continuous functions on X.

A.6 Definition [18]. A ring A is a pm-ring if every prime ideal p C A is contained in a unique
maximal ideal p C my, C A.

A.7 Definition. For a pm-ring A, we define the retract map r 4 : Spec(A) - MSpec(A) as the
unique map that sends a point x to its unique closed specialization (equivalently, it sends each
prime ideal p to the unique maximal ideal m, containing p). When there is no possibility of
confusion, we will denote the map r4 simply by r.

A.8 Remark. Below, we present a proof that r4 is always continuous for a pm-ring A. This
beautiful proof is due to De Marco and Orsatti. However, we want to emphasize that, a priori, it
is absolutely not clear whether the map r 4 has to be continuous or not. In fact, the author finds
it quite surprising and is not aware of any one-line proof of this fact.

A.9 Theorem [18, Theorem 1.2]. Let A be a pm-ring. Thenr : Spec(A) — MSpec(A) is a contin-
uous retract of the natural embedding 1 : MSpec(A) & Spec(A).

In fact, [18, Theorem 1.2] shows that A is a pm-ring if and only if : admits a continuous
retract (and r is the unique continuous retract in this case). However, since we never need the
other direction and it is significantly easier, we decided not to include it in this exposition.

Proof. Throughout this proof, we denote by Vgpe.(I) C Spec(A) the vanishing locus of an ideal
inside Spec(A), and by Vi (I) := Vgpec(I) NMSpec(A) the vanishing locus of I inside MSpec(A).

By construction, we know that rot = id. So the only thing we really need to show is that the
map r is continuous. We fix a closed subset Z C MSpec(A) and define

I::ﬂm and ]:=np.

meZ pCcA
r(p)eZ

For the purpose of proving continuity of , it is enough to show that r~1(Z) = VspecJ)-
Clearly, r~1(Z) C Vgpec(J). Therefore, after unravelling all the definitions, we see that it suffices
to show that, for any prime ideal p C A such thatJ C p, we have r(p) € Z.
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Step 1: We show Z = Vy,4(I). Since Z is closed, we know that Z = Vy,,(K) for some ideal
K C A. By construction, for any m € Z, we have K C m. In particular, K C I = ﬂmEZ m.
Thus, Vyax(I) € Vyax(K) = Z. On the other hand, the definition of I implies that Z C V(D).
Therefore, we conclude that

VMaX(I) c VMaX(K) =ZcC VMax(I) .

This implies that Vyp,,(I) = Z.

Now we set M := [ mez M. We note that 1 & M, so M # A. We warn the reader that the set
M is not generally an ideal in A.

Step 2: Let p C M be a prime ideal in A. Then r(p) € Z. Since p C M and I = ﬂmeZ m, we
conclude that p + I ¢ M # A. Thus, we can find a maximal ideal n C A such that

pCp+ICn.

Therefore, r(p) = n. Since I C n, Step 1 ensures that n € Z. This shows that r(p) € Z.

Step 3: Let J C p be a prime ideal in A. Then r(p) € Z. Since each prime ideal is contained
in a unique maximal ideal, it suffices to find a prime ideal q C p such that q C M; then Step 2
implies that r(p) = r(q) € Z.

Now we choose any t € A\ p and s € A\ M. Then ts # 0 since otherwise it would imply that

teﬂm:JCp.

meZ

Hence, the multiplicative system
S={ts|[teA-pandse A~M}

does not contain 0. Therefore, the localization A[S~!] is nonzero. Thus, any maximal ideal in
A[S~!] defines a prime ideal q C A disjoint from S. Since 1 €e A~ p and 1 € A\ M, we conclude
that ¢ C p N M, finishing the proof. O

A.10 Corollary. Let A be a pm-ring. Then MSpec(A) is a compact Hausdorff space.

Proof. Theorem A.9 constructs a continuous surjective map r : Spec(A) — MSpec(A). Since
Spec(A) is quasicompact and images of quasicompact spaces are quasicompact, MSpec(A) is
also quasicompact.

Now we show that MSpec(A) is Hausdorff. First, [STK, Tag 0904] implies that it suffices to
show that, for any two closed points x,y € Spec(A), there does not exist a point z € Spec(A)
which specializes to both x and y. This follows immediately from the fact that every point of
Spec(A) specializes to a unique closed point. O

A.11 Definition. Let f: A — B be a homomorphism between pm-rings. We define the associ-
ated morphism of maximal spectra MSpec(f) : MSpec(B) — MSpec(A) as the composition

MSpec(B) —=— Spec(B) Speeh), Spec(A) —A— MSpec(A).

A.12 Warning. In general, for a ring homomorphism A — B, the induced map of spectra
Spec(f) : Spec(B) — Spec(A) does not send MSpec(B) to MSpec(A). This does not even hold
for a general homomorphism of pm-rings. Indeed, consider a rank 2 valuation ring V' with the
fraction field K and a rank-1 localization . Then the map Spec(©®) — Spec(V'), induced by the
inclusion V' C O, sends the closed point of Spec(©) to a non-closed point of Spec(V).

74


http://stacks.math.columbia.edu/tag/0904

A.3 Rings of continuous functions

The main goal of this section is to show that the rings of continuous functions C(X,R) and
C(X, C) are pm-rings for any topological space X. This will be the crucial ingredient in showing
that the Cech-Stone compactification fX is homeomorphic to MSpec(C(X, R)).

We do not claim originality of any results of this subsection. In fact, our presentation that
C(X,R) is a pm-ring follows [27, Theorem 2.11] quite closely. The case of C(X, C) seems to be
missing in [27].

Throughout the section, we fix a topological space X.

A.13 Definition. Let f € C(X,R) be a continuous function. Its vanishing locus is the set
Vx(f)={xeX|f(x)=0}.
A.14 Definition. For a subset S C C(X, R), the collection of its zero sets is the subset
Vx[ST:={Vx(f) | f € S} C Sub(X)

of the set of all vanishing loci of elements in S.” For brevity, we put Vx[X] := Vx[C(X,R)] the
set of all vanishing loci of continuous functions on X.

A.15 Lemma [27, Theorem 2.3]. LetI C C(X,R) be an ideal and let Z,,Z, € Vx[I|. Then
(1) Z,nZ, e VxlI];
(2) ifZ e Vx[X]and Z, C Z, then Z € Vx|[I].

Proof. Let Z, = Vx(f1), Z, = Vx(f1), and Z = Vx(f) for f1, f, € I and f € C(X,R). The first
claim follows immediately from the observation that

Z1 0 Zy = Vx(f1) nVx(f2) = Vx(f + f3) € Vx[I].
The second claim follows immediately from the observation that

Z =71 VZ =Vx(f1)UVx(f) = Vx(f1f) € VxlI]. O
A.16 Definition. Anideal I C C(X,R)is a zs-ideal if Vx(f) € Vx[I] implies f € I.

A.17 Remark. Usually, zs-ideals are called z-ideals. We prefer to avoid this name for obvious
reasons.

A.18 Theorem [27, Theorem 2.5]. Let m C C(X, R) be a maximal ideal. Then m is a zs-ideal.

Proof. We denote by I,, C C(X, R) the subset of continuous functions whose vanishing locus is
equal to a vanishing locus of a function in m, i.e.,

(A.19) Iy ={f € C(X,R) | Vx(f) € Vx[m]}.

We first show that J(Vy[m]) is an ideal.
Now Lemma A.15 implies that I, is an ideal. We pick continuous functions f, g € I, and
h e C(X,R) and wish to show that f + g € I,;, and fh € I,;,. The former claim follows from the

"We denote by Sub(X) the set of all subsets of X.
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observation Vx(f + g) D Vx(f) N Vx(g) and Lemma A.15, while the latter claim follows from
the observation Vy(fh) D Vx(f) and Lemma A.15.

Now Equation (A.19) implies that, for the purpose of showing that m is a zs-ideal, it suffices
to show that m = I;,. Clearly, we have m C I;,. Therefore, the fact that m is a maximal ideal
implies that, in order to show that m = I,,, it suffices to show that 1 ¢ I,,. This is equivalent to
showing that @ ¢ Vx[m]. For this note that any f € m is not invertible, therefore @ # Vx(f).
This finishes the proof. O

A.20 Lemma. LetI,J C C(X,R) be two zs-ideals. Then I is a radical ideal and I N J is a zs-ideal.

Proof. We start with the first claim. Suppose f € rad(I), so f" e I for some n. Then we note that
Vx(f) = Vx(f™). So the definition of a zs-ideal implies that f € I. In other words, I is radical.

Now we deal with the second claim. We first claim that Vy[INJ] = Vx[I|NVx[J]. We always
have an inclusion Vx[INJ] C Vx[I]NVx[J], so it suffices to show that Vx [I|NVx[J] C Vx[INJ].
Pick Z € Vx[I] n Vx[J]. By definition, this means that there are elements f € I and g € J such
that Z = Vx(f) = Vx(g). Since J is a zs-ideal, it implies that f e J. Therefore, f € I NJ and,
hence, Z € Vx[I N J].

Now let f € C(X, R) be a continuous function such that Vx(f) € Vx[I nJ] = Vx[I] N Vx[J].
Then we use the fact that both I and J are zs-ideals to conclude that f e InJ,ie,INJisa
zs-ideal. O

A.21 Remark. Lemma A.20 implies that the ideal (x) € C(R, R) is not a zs-ideal.

A.22 Lemma [27, Theorem 2.9]. LetI C C(X,R) be a zs-ideal. Then the following are equivalent:

(1) TheidealI is prime;

(2) TheidealI contains a prime ideal;

(3) Forany f,g e C(X,R) suchthat fg =0,wehave f eI org e I;

(4) Forevery f € C(X,R), there is a subset Z C X such that Z € Vx[I] and f|, does not change
its sign.

Proof. The implications (1)=(2) and (2)=(3) are trivial.
Now we show (3)=>(4). We start by considering the continuous functions f* := max(f,0)
and f~ := min(f,0). Then clearly we have

fr-fm=o,
sowe have f* eI or f~ e I. Suppose f* e I (the other case is similar), then

{x eX | f(x) <0} = Vx(f*) e Vx[I].

Now we show (4)=(1). We pick two continuous functions f,g € C(X,R) such that fg e I
and wish to show that f € I or g € I. For this, we consider the continuous function h = | f| — |g|.
Our assumption implies that there is a zero set Z € Vx[I] such that k| is, say, nonnegative (the
other case is similar). Note that if f(x) = 0 and x € Z, then h(x) = —|g(x)| > 0. Hence, h(x) =
g(x) = 0 for such x € X. So we conclude that Z N Vx(fg) = Z n (Vx(f) UVx(g)) = Z NnVx(g).
Therefore, we see that Vx(g) € Vx[I] by virtue of Lemma A.15 and the following sequence of
inclusions:

Vx(8) D ZnVx(g) =ZnVx(fg)

Therefore, we conclude that g € I since I is a zs-ideal. O
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We are almost ready to show that C(X, R) is a pm-ring. We only need the following abstract
commutative algebra lemma.

A.23 Lemma. Let R be a ring and let p1,p, C R be prime ideals such that neither of them is
contained in the other. Then p1 N p, is not a prime ideal.

Proof. Chooset e p;~p,andse p,\p;.Thenst e pynp,buts& p;Nnp,andt & p;Np,. O
A.24 Theorem [27, Theorem 2.11]. The ring C(X,R) is a pm-ring.

Proof. Every prime ideal p C C(X, R) is contained in some maximal ideal, so it suffices to show
that p cannot be contained in two different maximal ideals m; and m,. We set I := m; N m,.
Then Theorem A.18 and Lemma A.20 imply that I is a zs-ideal. By construction, we have an
inclusion p C I. Therefore, Lemma A.22 ensures that I is a prime ideal. However, this contradicts
Lemma A.23. Hence, there is only one maximal ideal containing p. O

A.25 Corollary. Let X be a topological space. Then MSpec(C(X,R)) is a compact Hausdorff
topological space.

Proof. This follows directly from Theorem A.24 and Corollary A.10. O
We now address the fact that C(X, C) is a pm-ring.
A.26 Lemma. The natural map C(X,R) ®g C — C(X, C) is an isomorphism.

Proof. First, we note that the question is equivalent to showing that the natural map C(X, R) &
i-CX,R) —» C(X,C)is an isomorphism. In other words, we need to show that any continuous
function f € C(X, C) can be uniquely written as f = g +1i - h with g, h € C(X, R). Uniqueness is
clear. To see existence, we note that f = Re(f) + i - Im(f). O

A.27 Lemma. The natural map Spec(C(X, C)) — Spec(C(X, R)) restricts to a bijection
MSpec(C(X, C)) — MSpec(C(X, R)).

Proof. By Lemma A.26, C(X,R) — C(X, C) is a finite ring extension and thus Spec(C(X, C)) —
Spec(C(X, R)) maps closed points to closed points. To show that it restricts to a bijection on
closed points, it suffices to see that for every maximal ideal m c C(X, R) with residue field k,;,,
the tensor product ky; ®c(x,ry C(X, C) is a field. By Lemma A.26, this is equivalent to showing
that k., ®g C is a field. For this it suffices to show that the equation X2 + 1 = 0 has no solutions
in k,;. In other words, we need to show that there are no continuous functions f € C(X, R) and
g € m such that f2 = —1 + g. Suppose that such functions exist. Then we note that g is not
an invertible function since it lies in a maximal ideal. Therefore, there is a point x € X such
that g(x) = 0. Thus, we see that f(x)?> = —1 + g(x) = —1. Contradiction, so no such functions
exist. O

A.28 Corollary. The ring C(X,C) is a pm-ring.

Proof. Let P C C(X,C) be a prime ideal and let I C C(X, C) be a maximal ideal containing *p.
We put p := P n C(X, R) and we set m C C(X, R) to be the unique maximal ideal containing p.
Since Spec(C(X, C)) — Spec(C(X,R)) is a finite morphism (see Lemma A.26), it sends closed
points to closed points. So we conclude that It N C(X,R) = m. Thus the claim follows from
Lemma A.27.

O
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A.29 Corollary. The canonical map MSpec(C(X, C)) - MSpec(C(X, R)) is a homeomorphism.

Proof. By Corollaries A.10, A.25, and A.28 source and target are both compact Hausdorff spaces,
so the claim follows from Lemma A.27. O

A.4 Cech-Stone compactification via algebraic geometry

In this subsection, we show that the topological space MSpec(C(X, R)) satisfies the universal
property of the Cech-Stone for any topological space X; this gives a new proof of the existence
of the Cech-Stone compactification and automatically identifies it with MSpec(C(X, R)).

A.30 Definition. The Cech-Stone compactification of a topological space X is the pair (8(X), ix)
of a compact Hausdorff space 3(X) and a continuous morphism iy : X — B(X) such that, for
every other compact Hausdorff space Y with a continuous map f : X — Y, there is a unique
continuous map B(f) : B(X) — Y such that f = B(f)oiy.

A.31 Remark. Clearly, the Cech-Stone compactification of X is unique up to a unique homeo-
morphism if it exists.

We recall (see Construction A.1) that, for every topological space X, we have the natural
morphism ¢y : X — MSpec(C(X, R)). Our goal is to show that the pair (MSpec(C(X , R)), LX>
satisfies the universal property of the Cech-Stone compactification.

A.32 Theorem. Let X be a compact Hausdorff space. Then the natural map
ty 1 X = MSpec(C(X, R))= MSpec(C(X, C))
is a homeomorphism.

Proof. The homeomorphism MSpec(C(X, R)) = MSpec(C(X, C)) is simply Corollary A.29. Thus
we only prove that ¢y is an isomorphism.

Step 1: 1y is injective. To show injectivity of ty, it suffices to show that any two points x,y €
X can be separated by a continuous function f: X — R. More precisely, we need to find a
continuous function f: X — R such that f(x) = 0 and f(y) # 0. Such a function exists by
Urysohn’s Lemma [64, Theorem 33.1].

Step 2: iy has dense image. This follows directly from Lemma A.3.

Step 3: 1y is a homeomorphism. Since X is quasi-compact, we conclude that its image tx(X) is
also quasi-compact. Since MSpec(C(X, R)) is Hausdorff (see Corollary A.25), we conclude that
x(X)isclosed. Since ix (X) € MSpec(C(X, R)), we conclude that ¢y must be surjective. Therefore,
Ly is a bijective continuous map between compact Hausdorff spaces (see Corollary A.25), so it is
a homeomorphism by virtue of [STK, Tag 08YE]. O

A.33 Lemma. Let f: X — Y be a continuous map of topological spaces. Then there is a unique
continuous map f : MSpec(C(X, R)) — MSpec(C(Y,R)) that makes the square

X / Y

MSpec(C(X,R)) f> MSpec(C(Y,R))

commute.
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Proof. First, we note that y(X) ¢ MSpec(C(X,R)) is dense by Lemma A.3. Therefore, f is
unique if exists. For the existence, we denote by f* : C(Y,R) — C(X, R) the natural pullback
homomorphism. Then f = MSpec(f*) does the job (see Theorem A.24 and Definition A.11). [

A.34 Theorem. Let X be a topological space, let'Y be a compact Hausdorff space, and let f : X —
Y be a continuous map. Then there is a unique continuous map f : MSpec(C(X,R)) — Y that
makes the triangle

f

X ——— Y

."J
o f

MSpec(C(X, R))
commute.
Proof. This follows immediately from Lemma A.33 and Theorem A.32. O

A.35 Corollary. Let X be a topological space. Then the Cech-Stone compactification (8(X), ix) of
X exists and B(X) ~ MSpec(C(X, R)).

Proof. This follows immediately from Theorem A.34 and Remark A.31. O

B Galois groups of function fields

It is well-known that there is an isomorphism of profinite groups
/P\‘I'C o~ GalC(T)

between the free profinite group on the underlying set of C and the absolute Galois group of
the function field C(T). See [19; 38]. Moreover, it seems to be folklore that this isomorphism
can be chosen so that the free profinite group generated by an element a € C corresponds to
a decomposition group of the prime (T — a). See [46, §1.8]. The purpose of this appendix is to
record a proof of this folklore statement. Implicitly this is also shown in [50] and we do not claim
originality of any of the results in this appendix.

B.1 Notation. Throughout this section we fix an algebraic closure K of the function field C(T).
We write Galg(ry :== Gal(K/C(T)).

B.2 Recollection. Write C[T] C K for the integral closure of C[T] in K. For any a € C a choice

of prime ideal @ in C[T] lying over (T — a) then determines a decomposition group Dz C Galg(r.
Moreover, if @’ is another choice of prime above (T — a), then Dy is conjugate to Dj.

Our goal is to prove the following result, which is a slight refinement of [19, Theorem 2] for
C=C.

B.3 Theorem. There is an isomorphism of profinite groups
/Iirc b Galc(t)
such that for each a e C the image of Z(a) under this isomorphism is the decomposition group Dgjq

of a prime a lying over (T — a).
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B.4 Definition. Let M be a set. Write X for the system of finite subsets S C M partially ordered
by inclusion. Let ((Gg)ges» (pg)ScT) be an inverse system of profinite groups with limit Gy, :=
limg.s Gg and write p? : Gy — Gg for the canonical projection. Let N be either the whole of
M, or an element of =.

(1) We say that a function ¢ : N — Gy is adapted if pg (¢(n)) = 1 for all finite subsets S C N
andalln ¢ S.

(2) We say that a function ¢ : N — Gy is an adapted basis if ¢ is adapted and if the map
Fry — Gy induced by ¢ is an isomorphism.

(3) We say that a system B = (Bg)ses of sets of functions By C Hom(S, Gg) is a system of
adapted bases if the following conditions hold.

(a) Foreach S € ¥, By € Hom(S, Gs) = [ [ Gs is a nonempty closed subset consisting of
adapted bases.

T
.. ® P .
(b) Foreach S C T € %, and each ¢ € By, the restrictionS C T — Gy = Gg is an element
Of Bs.

B.5 Proposition. Let M be a set. Write X for the poset of finite subsets S C M partially ordered by
inclusion. Let ((Gg)ses, (pg)SCT) be an inverse system of profinite groups with limit G := limg.s Gg
and write pg’l . Gyt — Gg for the canonical projection. Let B be a system of adapted bases. If all

the transition maps pg : Gr — Gy are surjective, then there exists an adapted basis M — G, such
that for each S € %, the restriction

ps'
SCM—)GM—)GS

is a basis contained in Bg.

Proof. In [19, Theorem 1], Douady proved the above claim in the case where B is the system of
adapted bases consisting of Bg the set of all adapted bases S — Gg. However, the argument he
gives actually only uses the axiomatic of a general system of adapted bases in the above sense. [

We will use the following lemma:

B.6 Lemma. Let G be a profinite group and let H, H' C G be closed subgroups. Leta: G — G’
be a homomorphism of profinite groups. Let

M :={geGla(g Ha(H)a(g) = a(H")}.
Then M is closed in G.
Proof. We first consider the set

M ={geG|algHa(H)a(g) Cc a(H")}.

For h € H, write
M} ={g<G|a(ghg) € a(H)}.
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This is preimage of a(H') C G’ under the continuous map G — G’ that sends g to a(g~'hg).
Since a(H") C G’ is closed it follows that M, is closed. Since

M = ﬂ M)
heH

it follows that M’ is closed. Now note that the same argument shows that
M" :={g e Gla(@aH)a(g)™" C a(H)}
is closed. Thus M = M’ n M"' is closed. O

Proof of Theorem B.3. Our choice of algebraic closure yields an isomorphism

Galc(T) = ch%}qite 7'[f$t(A1 NS, 7’7) .
Letus write Gg = tht(A1 S, 7). We want to apply Proposition B.5 to this inverse systems of groups
and the system of adapted bases Bg that consists of those maps ¢ : S — Gg that are adapted
bases and for any s € S, the subgroup Z(¢(s)) is (conjugate to) a decomposition group at s. To see
that (Bg)y is a system of adapted bases, we need to show that the conditions Definition B.4-(3.a)
and Definition B.4-(3.b) are satisfied. It is clear that (3.b) is satisfied, so we only check (3.a).
We start by verifying that By € Hom(S, Gy) is closed. To this end, note that the larger subset
Bg“ C Hom(S, Gs), consisting of all adapted bases is closed, see the beginning of the proof of [75,
Proposition 3.4.9]. To conclude, it suffices to see that for all s € S the subset Z; C Gg, consisting
of those ¢ € Gg with the property that Z(c) is a decomposition group at s, is closed. Indeed, in
this case
BS = 3;11 N st C HOm(S, Gs) = H GS .
seS S

is seen to be an intersection of closed subsets, hence itself closed. Fix one decomposition group
D; at 5. Since Dy ~ Z, the subset N C D, of elements that topologically generate Dy is closed.
Now observe that X agrees with the image of the continuous map

NXGs — Gs; (n,8)~ g 'ng

and is therefore closed, since the domain is compact. Finally, we need to check that Bg # @.
Choose a point x € C~ S and an étale path o : 7 w x and consider the isomorphism

P mPCNS, 0N = AL S, x) = (AL~ S, 7)

obtained from the Riemann existence theorem and conjugation with «~!. Recall that Tttfp (C~S,x)
is freely generated by simple loops y, at x around s, that do not loop around other points in S.
Then (s — ¥(y,)) is clearly an adapted basis and furthermore (y,) generates a decomposition
group at s. Thus (s = P(ys)) € Bs.

By applying Proposition B.5, we obtain an isomorphism ¢ : Fre = Galg(ry with the property
that for all finite subsets S C Cand a € S, (pgo(p)(a) generates a decomposition group at a in
Gg. We now show that ¢(a) generates a decomposition group at a in Galg(r) for any a € C. To
this end, fix one decomposition group D, C Galg(r) of a. By the above, for every finite subset
S C C there exists some g € Galgry such that Z(p(a)) = g7'D,4g in Gg. Now by Lemma B.6 the
set Cg of all such g is closed. Therefore [ s Cs = limg Cy is nonempty as a cofiltered limit of
nonempty compact Hausdorff spaces. By construction, any element g € () s Cs has the property

that i(qo(a)) = g~'D,g holds after projecting to Gg simultaneously for all S C C finite. Since
both D, and Z(¢(a)) are closed subgroups of Galg(ry = limgcc finite Gs, this shows that indeed

g7 1D,g = Z(¢(a)). In particular, p(a) generates a decomposition group as desired. O
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C A profinite analogue of Quillen’s Theorem B

The goal of this appendix is to prove Theorem C.7, an analogue of Quillen’s Theorem B after
completion at a set of primes. Most of the material here is a part of the sixth author’s thesis [81,
§7.3]. Nevertheless, here the main result is formulated slightly more generally and the exposition
was changed to make it more readable for those less familiar with the theory of internal higher
categories developed by the fifth and sixth authors.

C.1 Quillen’s Theorem B

Given a functor of co-categories f : € — D, Quillen’s Theorem B [65, Theorem B] gives a way
of calculating the homotopy fiber of the induced map of classifying anima Bf : BC — BD. We
begin this appendix by giving a short and model-independent proof of Theorem B that is easier
to generalize than Quillen’s original argument.

C.1 Theorem (Quillen’s Theorem B). Let f : C — D be a functor of co-categories such that for
anyd — d’ € D the induced map
BC’/d g B(:’/d/

is an equivalence. Then for any d € D, the commutative diagram

BC,y —— BC

| [

*~BD,; —— BD

is a cartesian square of anima.
The proof rests on the following observation:

C.2 Proposition. Let p: F — D be a left fibration with corresponding straightened functor
p: D — Ani Ifforeach maps: d — d' in D, the induced map p(s) is an equivalence, then for
each d € D, the square

F4 — BF

l 1BP

*T)Bl)

is cartesian.

Proof. By assumption, p: D — Ani factors through the unit map 2 — BD. Pulling back the
universal left fibration, we thus get a diagram

?d F F! Al‘ll*/

I
p

* D BD Ani
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in which all squares are cartesian. Note that since left fibrations are conservative and B2 is an
anima, #' is an anima. Since B : Cat,, — Ani is locally cartesian (see (5.3)), by applying B to
the middle and left-hand squares, we get another diagram

Fy BF —— 7’
1 .
[ == ]
* — BD 3 BD
in which all squares are cartesian, completing the proof. O

C.3 Remark. The assumptions of Proposition C.2 are satisfied whenever the left fibration p is
additionally a right fibration, i.e., a Kan fibration.

We now need to build the correct left fibration to which we can apply Proposition C.2. For
this we need the following.

C.4 Notation. Let D be an oo-category. We write Cocart(D) C Cat,, /5 for the subcategory
with objects cocartesian fibrations p: & — 2 and morphisms the cocartesian functors. We
write

LFib(D) c Cocart(D)

for the full subcategory spanned by the left fibrations. Note that LFib(2D) is also a full subcategory
of Caty, /p.

C.5 Recollection. For an oco-category D, the inclusion Fun(D, Ani) & Fun(D, Cat,,) ad-
mits a left adjoint given by postcomposition with B: Cat,, — Ani. Under the straightening-
unstraightening equivalence, this corresponds to a left adjoint of the inclusion

LFib(D) < Cocart(D) .

Explicitly, this adjoint sends a cocartesian fibration p: P — D to the unique left fibration
L(p): ¥ — D that fits in a commutative triangle

pP—rt L F
R /(p)
D
where the functor ¢ is initial. Indeed, such a factorization exists because left fibrations are the

right class in the initial-left fibration factorization system, see, e.g., [57, § 4.1]. This also implies
that for any left fibration g : G — D, there is a natural equivalence

>

Mapcocan(n) (P @ = Mapeye (P> @) = MaPy i) (L(P), @) -

Here, left-hand equivalence holds since for left fibrations every edge is cocartesian. The right-
hand equivalence follows from the fact that the left fibrations are the right class of a factorization
system [HTT, Lemma 5.2.8.19].

In order to prove Theorem C.1, we fix some notation regarding oriented fiber products of
oo-categories.
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C.6 Recollection. Let f: C — D be a functor of co-categories. We consider the oriented fiber
product (also called comma co-category) € X4, D defined via the pullback

CXgp D —— Fun([1], D)

l - l(evo,evl)

CXD —— DxD
ledI)

in Cat,,. Note that by the universal property of the pullback, the functors (ide, f): € - € X D
and

f id(
¢ — D —> Fun([1],D)

induce a functor j : € = €Xyp D. By [HTT, Corollary 2.4.7.12], the projection pr,: CXpD - D
is a cocartesian fibration. The cocartesian fibration pr, classifies the functor

D - Caty,, d— Cy.
Furthermore, f factors as
c—L.expp 22 p,
and j admits a right adjoint given by projecting to the first factor.

Proof of Theorem C.1. We apply the left adjoint L of Recollection C.5 to the cocartesian fibration
pr,: CXpD — D.Our assumptions precisely say that the resulting left fibration L(pry): ¥ - D
satisfies the assumptions of Proposition C.2. Thus we get a commutative diagram

Bj

BC/q BC B(C Xp D) — BF
1 le lBL(prZ)
*2BD)g —— BD — BD,

where the outer square is cartesian. Furthermore, since B inverts adjoints and initial functors
(see, e.g., [15, Corollary 2.11(4) & Remark 2.20]), the right square is cartesian. Thus the left
square is cartesian, as desired. O

C.2 Profinite Theorem B

The goal of this subsection is to prove a variant of Quillen’s Theorem B for profinite categories
following the general strategy of § C.1. The main ingredient of the proof of Theorem C.1 was the
straightening-unstraightening equivalence. However profinite categories are not well-behaved
enough to admit a full straightening-unstraightening equivalence. The solution is to embed
profinite categories into condensed categories, where we have a straightening-unstraightening
equivalence thanks to [58, Theorem 6.3.1]. The precise theorem we aim to prove in this subsec-
tion is the following:

C.7 Theorem. LetX be a nonempty set of prime numbers. Let f . € — D beamap in Cat(Pro(Ani,))
such that for any map d — d' in D the map of condensed anima

Bcond(e/d) N Bcond(e/d, )
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becomes an equivalence after X-completion. Then, for all d € D, the induced map
Bcond(e/d) N fibd(Bcondf)
becomes an equivalence after X-completion.

As mentioned above, straightening-unstraightening plays a crucial role in our proof. Thus,
we begin by defining cocartesian fibrations of condensed co-categories.

C.8 Definition. Let C be a condensed co-category.

(1) A functor p: P — € of condensed oo-categories is a cocartesian fibration if for each S «
Pro(Setg, ), the induced functor p(S): P(S) — C€(S) is a cocartesian fibration and, fur-
thermore, for each map a: T — S in Pro(Setg,), the functor a* : P(S) — P(T) sends
p(S)-cocartesian morphisms to p(T)-cocartesian morphisms.

(2) A cocartesian fibration p: P — Cis a left fibration if for each S € Pro(Setg, ), the induced
functor p(S) : P(S) — C(S) is a left fibration.

cts

(3) We write Cocart™"(C) for the subcategory of Cond(Cat,,) e with objects the cocartesian
fibrations and morphisms the functors f : P — Q over € such that for every S € Pro(Setg,,),
the functor f(S) preserves cocartesian morphisms. We write LFib™(€) c Cocart“®(€) for
the full subcategory spanned by the cocartesian fibrations.

C.9 Remark. Let us denote by Fun“**"'([1], Cat,,) the subcategory of Fun([1], Cat,,) with
objects cocartesian fibrations and a morphism from p: ? — Cto p’': P’ — €' is a square
squares

f

P — 7
pl lp’
c—— ¢

such that f sends p-cocartesian morphisms to p’-cocartesian morphisms. Then combining [25,
Theorem 4.5] and [HA, Proposition 7.3.2.6] shows that the inclusion
Fun®“"([1], Cat,,) & Fun([1], Cat,,)

is a right adjoint. In particular, the inclusion preserves limits.

Let p: P — € be a functor of condensed co-categories. The closure of Fun®**"([1], Cat,,)
under limits in Fun([1], Cat,,) shows that if p is a cocartesian fibration, then any map of con-
densed anima s : B — A, the functor s* in the square

Fun“(4, ?) ——— Fun®(B, P)

o |»

Fun®®(4, €) — Fun““(B, @)

sends p(A)-cocartesian morphisms to p(B)-cocartesian morphisms. Thus, using [58, Proposi-
tion 3.17], it follows that our definition of cocartesian fibration agrees with the definition given
in [58] in the case B = Cond(Ani).
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C.10 Remark. By Remark 6.4, a functor of condensed co-categories p : F — C is a left fibration
in the sense of Definition C.8 if and only if p°P is a right fibration in the sense of Definition 6.2.
Furthermore, if # — € is a left fibration and ? — € is a cocartesian fibration, then every functor
[ P — F of condensed co-categories over € is a map in Cocart™ ().

For the condensed version of straighetning-unstraightening, we need to consider the con-
densed oo-category of condensed oo-categories:

C.11 Definition. We write Cond(Cat,,) for the condensed co-category given by the assignment
Pro(Setﬁn)Op > S Cat(Cond(Ani)/s) .

C.12 Theorem ([58, Theorem 6.3.1] and [57, Theorem 4.5.1]). There is an natural equivalence
of co-categories
Cocart®®(€) ~ Fun“®(€, Cond(Cat,,))

Moreover, this equivalence restricts to a natural equivalence
LFib“™®(€) ~ Fun®®(€, Cond(Ani)) .
We also have the following analogue of Recollection C.5 for condensed oco-categories:

C.13 Observation. Recall that the inclusion Cond(Ani) < Cond(Cat,,) admits a left adjoint
Bcnd : Cond(Cat,,) — Cond(Ani). It is easy to see that both of these functors are compatible
with basechange and therefore lift to an adjunction of condensed co-categories

t: Cond(Ani) & Cond(Cat,,) : Beond |

i.e.,an adjunction in the (o0, 2)-category of condensed co-categories. See also [59, Definition 3.1.1
and Proposition 3.2.14]. Thus the induced functor

Fun®“(€, Cond(Ani)) — Fun“*(€, Cond(Cat,,))

admits a left adjoint given by postcomposition with B°°"d, Under the straightening-unstraightening
equivalence of Theorem C.12, this corresponds to a left adjoint L of the inclusion

LFib™®(€) & Cocart®(C).

Since left fibrations of condensed categories are the right class in the initial-left fibration
factorization systems, as in Recollection C.5, it follows from [HTT, Lemma 5.2.8.19] that the left
adjoint is given by factoring » — C into an initial functor followed by a left fibration.

To follow the strategy outlined in § C.1, we need a version of Proposition C.2. Now another
complication enters. Unlike in § C.1, the maps B"(@ /d) = Beond(@ /qr) are not assumed to
be equivalences on the nose, but only after Z-completion. Thus, we also need an analogue of
Proposition C.2 that works up to completion. We prove the following statement, which is a
variant of [62, Corollary 5.4]:

C.14 Proposition. Let X' be an co-category with colimits and let L: Cond(Ani) — X be a
colimit-preserving functor. Let C be a condensed co-category and p: F — C a left fibration of
condensed oo-categories corresponding via Theorem C.12 to a functor of condensed co-categories
p: € — Cond(Ani). Assume that for each profinite set S, the functor

e(S) LOR Cond(Ani),; —— Cond(Ani) L.
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sends all morphisms to equivalences. Then for everyd : S — C, the induced map
p(d) SXeF - S XpBeond @ Bcond?
becomes an equivalence after applying L.

C.15 Recollection. For the proof of the Proposition C.14, we recall that a functor of condensed
oo-categories f : F — Cis a Kan fibration if it is both a left and right fibration. Equivalently, f
is Kan fibration if any of the following equivalent conditions is satisfied:

(1) For any S e Pro(Setg,,), the functor f(S) is a Kan fibration.
(2) The functor f is right orthogonal to all maps of the form S X {e&} — S X [n], where S €
Pro(Setg,), n € N, and ¢ € {0, n}.
Indeed, this follows immediately from Remark 6.4 and [57, Lemma 4.1.2].
Proof of Proposition C.14. We work in the co-category
Cond(Ani), = Fun(A°P, Cond(Ani))

of simplicial objects in Cond(Ani). We factor S — Cas S 5 T i) C where i is contained in the
smallest saturated class in (Cond(Ani),) /e containing all maps of the form

fe§ xS ————— [n] xS
\ /

where n € N, € € {0,n}, and S € Pro(Setg,,), and f is right orthogonal to these maps. It follows
from Recollection C.15 that f is a Kan fibration. Since Kan fibrations are levelwise Kan fibrations,
it follows from Remark C.3 that the natural map

Bcond(s Xe .’f) - S XpBeond @ Bcond?

is an equivalence Thus it suffices to see that the induced map S Xe & — T Xe F becomes an
equivalence after applying LoB°d,

We note that, by the universality of colimits in Cond(Ani),, the class M of allmapss: A — B
in (Cond(Ani),) /¢, that have the property that

L colimpop(A Xe F) — L colimpop(B Xe F)

isan equivalence is a saturated class in the sense of [ 57, Definition 2.5.5]. To see that i is contained
in M, it therefore suffices to check this for the maps {¢} X S — [n] x S, where S € Pro(Setg,,)
and ¢ € {0, n}. Note that since the pulled back functor ([n] X S) Xe F — [n] X S is again a left
fibration and the pullback of a final functor along a left fibration is final [57, Proposition 4.4.7],
the induced funtor ({n} x S) xe F = ([n] X S) Xe F is final. In particular,

BN (({n} x ) Xe F) — BOM(([n] X S) X¢ F)

is an equivalence, so {n} xS — [n] xS is in M. Furthermore, under this equivalence, the induced
map

({0} x S) Xe F = BY(([n] x S) Xe¢ F)
is identified with the map ({0} X S) X¢ F — ({n} X S) Xe F induced by 0 — n in [n] (see
Lemma C.16 and Remark C.17 below). But this map is an L-equivalence by assumption. There-
fore, i is contained in M, which completes the proof. O
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C.16 Lemma. Letp: F — Cbealeftfibration of condensed co-categoriesand p : € — Cond(Ani)
the straightened functor. Then for any morphism o in C(S) for some S € Pro(Setg,), given by
a: [1]X S — €, the map p(a) in Cond(Ani) g is given by composing

({0} x ) xe F — BOM(([1] X ) Xe F)
with the inverse of the equivalence ({1} X S) Xe F — BM(([1] X S) Xe F).
Proof. By pulling back along o we may assume that « is the identity. Also we have an equivalence
LFib*®([1] x S) ~ Fun®®([1] x S, Cond(Ani)) ~ Fun([1], Cond(Ani) /s) -
Now observe that p(x) can be computed as
evy(e: constevy p — p)

Here ¢ denotes the counit of the adjunction const : Cond(Ani) s < Fun([1], Cond(Ani) 5) : ev,.
Translating to the fibrational perspective via Theorem C.12, we obtain a rectangle

{1} x Fy — Fio Xjopxs ([1] x 8) 2 [1] X Fypy

p@)| E

F{l} B F
| |
{1} xS [1]x S

and we are done once we see that the composite Fyp — Fyoy Xgoixs ([1] X S) — F is identified
with the inclusion Fy, — F after applying Beond, But this is clear, since the two inclusions
{i} X Foy & [1] X Fy,1 = 0,1, are identified after applying B"d and the composite

{0} XF{O} g [1] XF{O} — F
yields the inclusion Fy5, — F by construction. O

C.17 Remark. In the situation of Lemma C.16, we may more generally consideramap a : [n]X
S — C corresponding to a composable sequence of n arrows in C(S). Let us denote by j : [1] —
[n] the map that sends 0 to 0 and 1 to n. We then get a commutative diagram

({0} X S) xe F —— BOM(([1] X S) X F) e—— ({1} X S) X¢ F

N ! t

({0} x S) Xe F —— BOM(([n] X S) X F) «—=— ((n}x ) xe F

where the map in the middle is induced by j. Since left fibrations are smooth [57, Proposi-
tion 4.4.7], the right horizontal maps are equivalences and thus also the vertical map in the
middle is an equivalence. It follows that the composite of the lower left map with the inverse of
the lower right map is equivalent to p applied to the composite of the n arrows determined by a.

One difference between Proposition C.14 and Theorem C.7 is that in the former we consider
fibers over general profinite sets S, while in the latter we only look at fibers over points. To reduce
from profinite sets to points, we use the following observation:
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C.18 Lemma. Consider a cartesian square

B— A
[
T — S

in Cond(Ani) such that A is the colimit of a diagram A°? — Pro(Ani;) — Cond(Ani) and
S,T e Pro(Aniy). Then this square remains cartesian after X-completion.

Proof. Since Cond(Ani) is an co-topos, geometric realizations are universal in Cond(Ani). By
[33, Example 1.9 and Corollary 1.13], geometric realizations are also universal in Pro(Aniy).
Thus we may assume that A € Pro(Ani,). Since the functor Pro(Ani,) — Cond(Ani) is fully
faithful, the composite

()%
Pro(Ani,) —— Cond(Ani) —=, Pro(Aniy)
agrees with the Z-completion functor (—)’Z\ : Pro(Ani,) — Pro(Aniy). The claim now follows
from the fact that Z-completion is locally cartesian [36, Proposition 3.18]. O
C.19. Let f: C — D be a functor of condensed co-categories. We now consider the condensed

co-category € Xy, D defined via the pullback square

€ Xp D —— Fun®([1], D)

|
l l(evo,evl)

CXD —— DxD
fXIdD

as in Recollection C.6. By by [HTT, Corollary 2.4.7.12], the projection pr, : C XpD — Disa
cocartesian fibration of condensed co-categories.

For sake of completeness we verify the following two facts which we have already used
for ordinary co-categories in the proof of Theorem C.1. First recall that by unstraightening

the cocartesian fibration of condensed co-categories ev; : Funcond([l], ©) — G, one sees that
overcategories of condensed oo-categories are functorial.

C.20 Proposition. Let f : C — D bea functor of condensed co-categories and consider the natural
cocartesian fibration pr, : C X9 D — D. Then for every profinite set S and morphism d — d’ in
D(S), the induced functor on fibers is the canonical functor

C’/d =CXqp D/d — CXp D/d’ = G/d;
in Cond(Cat,,) s induced by the slice functoriality D ;g — D 4.
Proof. We observe that the pullback square

€%p D —— Fun®([1], D)

J
J/ l(evo,evl)

GX:D—_> @X@
fXIdD
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is in fact a pullback square in Cocart(D). Under the equivalence of Theorem C.12, it therefore

corresponds to a cartesian square of functors D — Cond(Cat,,)

CXpD —— Dy

| l

const(C) T) const(D)

which proves the claim. O

C.21 Lemma. Forany functor of condensed co-categories f : € — D, the functor j : € = CXpD
is a fully faithful left adjoint.

Proof. The functor j sits inside the commutative diagram

f

C—— D

jl lconst

CXp D —— Fun®™([1], D)

l levo

C —— D,

f

in which all squares are cartesian. Since const is the fully faithful left adjoint of ev,, the proof of
[59, Lemma 6.3.9] shows that j is also a fully faithful left adjoint. O

Proof of Theorem C.7. We factor f as
e —L.ex,p 220
and apply the left adjoint of Observation C.13 to the cocartesian fibration pr,. The resulting left
fibration p : ¥ — @ classifies the functor
Bndopr, : € — Cond(Ani)

and is given by factoring

CxXpD 7 L e,

where ¢ is initial and p is a left fibration. Here, pr, is the unstraightened functor of pr,.
We now apply Proposition C.14 to the left fibration p, with L the X-completion functor

(-)y : Cond(Ani) — Pro(Aniy).

Thus we have to verify that for any S € Pro(Setg,) and any map a : d — d’ € G(S), the induced
map Bcondﬁrz(a) becomes an equivalence after Z-completion. By construction pr,(d) is defined
via a cartesian square

pt,(d) —— CXp D

| |

ST)D
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and similarly for pt,(d"). It follows that both pt,(d) and pt,(d’) are in Cat(Pro(Ani,)) since the
latter is closed under limits in Cond(Cat,,). It follows that for any point s : * — S the cartesian
square

Bcondfﬁ'z(dos) Bcondfﬁ'z(d)

| |

—_—
S S

satisfies the assumptions of Lemma C.18, since B°™ is the geometric realization of the corre-
sponding simplicial object. Thus it remains cartesian after X-completion (also the same holds for
d’ instead of d). By [SAG, Theorem E.3.6.1], equivalences in Pro(Anis ) can be checked fiberwise.
Thus we may thus reduce to the case where S = . But in this case B°°“dp~r2(oc) is by construction
the map

Bcond(e/d) - Bcond(e/d,) ,

which becomes an equivalence after -completion by assumption. Thus, Proposition C.14 shows
that in the commutative diagram

cond ;

peond @/d Beond @ B peond © QI) D) BeonY, peond &
peond f Beond L(prz)
%~ Bcond D/d y Bcond D = Bcondp ,
i

the outer square is cartesian. Since B°™ inverts left adjoints and initial functors of condensed
oo-categories, the claim follows. O
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